Software architecture design is a critical step of software development. Currently, there are various design methods available and each is focusing on certain perspective of architecture design. Especially, quality-ba...Software architecture design is a critical step of software development. Currently, there are various design methods available and each is focusing on certain perspective of architecture design. Especially, quality-based methods have received a lot of attentions and have been well developed for single system architecture design. However, the use of quality-based design methods is limited in software product line (SPL) because of the complexity and variabilities existing in SPL architecture. In this paper, we introduce an extra view to the Quality-Driven Architecture Design and quality Analysis (QADA) method, in order to provide a more effective quality-based architecture design framework for SPL. In this framework, the quality attributes of a software system will be taken into account in the early stage of architecture design and the reference architecture of SPL will be elicited based on quality-related consideration.展开更多
Requirements of a system keep on changing based on the need of stakeholders or the system developers, making requirement engineering an important aspect in software development. This develops a need for appropriate re...Requirements of a system keep on changing based on the need of stakeholders or the system developers, making requirement engineering an important aspect in software development. This develops a need for appropriate requirement change management. The importance of requirements traceability is defining relationships between the requirements and artefacts extracted by the stakeholder during the software development life-cycle and gives vital information to encourage software understanding. In this paper, we have concentrated on developing a tool for requirement traceability that can be used to extend the requirement elicitation and identification of system-wide qualities using the notion of quality attribute scenarios to capture the non-functional requirements. It allows us to link the functional and non-functional requirements of the system based on the quality attribute scenarios template proposed by the Carnegie Mellon Software Engineering Institute (SEI). Apart from this, the paper focuses on tracing the functional and non-functional requirements of the system using the concept of requirement traceability matrix.展开更多
文摘Software architecture design is a critical step of software development. Currently, there are various design methods available and each is focusing on certain perspective of architecture design. Especially, quality-based methods have received a lot of attentions and have been well developed for single system architecture design. However, the use of quality-based design methods is limited in software product line (SPL) because of the complexity and variabilities existing in SPL architecture. In this paper, we introduce an extra view to the Quality-Driven Architecture Design and quality Analysis (QADA) method, in order to provide a more effective quality-based architecture design framework for SPL. In this framework, the quality attributes of a software system will be taken into account in the early stage of architecture design and the reference architecture of SPL will be elicited based on quality-related consideration.
文摘Requirements of a system keep on changing based on the need of stakeholders or the system developers, making requirement engineering an important aspect in software development. This develops a need for appropriate requirement change management. The importance of requirements traceability is defining relationships between the requirements and artefacts extracted by the stakeholder during the software development life-cycle and gives vital information to encourage software understanding. In this paper, we have concentrated on developing a tool for requirement traceability that can be used to extend the requirement elicitation and identification of system-wide qualities using the notion of quality attribute scenarios to capture the non-functional requirements. It allows us to link the functional and non-functional requirements of the system based on the quality attribute scenarios template proposed by the Carnegie Mellon Software Engineering Institute (SEI). Apart from this, the paper focuses on tracing the functional and non-functional requirements of the system using the concept of requirement traceability matrix.