A unisexual species is generally associated with polyploidy, and reproduced by a unisexual reproduction mode, such as gyno- genesis, hybridogenesis or parthenogenesis. Compared with other unisexual and polyploid speci...A unisexual species is generally associated with polyploidy, and reproduced by a unisexual reproduction mode, such as gyno- genesis, hybridogenesis or parthenogenesis. Compared with other unisexual and polyploid species, gibel carp (Carassius au- ratus gibelio) has a higher ploidy level of hexaploid. It has undergone several successive rounds of genome polyploidy, and experienced an additional, more recent genome duplication event. More significantly, the dual reproduction modes, including gynogenesis and sexual reproduction, have been demonstrated to coexist in the polyploid gibel carp. This article reviews the genetic basis concerning polyploidy origin, clonal diversity and dual reproduction modes, and outlines the progress in new va- riety breeding and gene identification involved in the reproduction and early development. The data suggests that gibel carp are under an evolutionary trajectory of diploidization. As a novel evolutionary developmental (Evo-Devo) biology model, this work highlights future perspectives about the functional divergence of duplicated genes and the sexual origin of vertebrate animals.展开更多
基金supported by the National Key Basic Research Program (Grant No. 2010CB126301)the National Natural Science Foundation of China (Grant No. 30630050)+1 种基金the Open Project of State Key Laboratory of Freshwater Ecology and Biotechnology (Grant No. 2008FB007)the Innovation Project of Institute of Hydrobiology, Chinese Academy of Sciences (Grant No. 075A01)
文摘A unisexual species is generally associated with polyploidy, and reproduced by a unisexual reproduction mode, such as gyno- genesis, hybridogenesis or parthenogenesis. Compared with other unisexual and polyploid species, gibel carp (Carassius au- ratus gibelio) has a higher ploidy level of hexaploid. It has undergone several successive rounds of genome polyploidy, and experienced an additional, more recent genome duplication event. More significantly, the dual reproduction modes, including gynogenesis and sexual reproduction, have been demonstrated to coexist in the polyploid gibel carp. This article reviews the genetic basis concerning polyploidy origin, clonal diversity and dual reproduction modes, and outlines the progress in new va- riety breeding and gene identification involved in the reproduction and early development. The data suggests that gibel carp are under an evolutionary trajectory of diploidization. As a novel evolutionary developmental (Evo-Devo) biology model, this work highlights future perspectives about the functional divergence of duplicated genes and the sexual origin of vertebrate animals.