在多组分条件下通过采用悬浮型光催化纳滤膜反应器进行目标污染底物 H 酸的光催化降解效率及反应动力学研究,控制干扰污染物吐氏酸和变色酸浓度分别为5,10,20,25,40mg/L,控制 H 酸浓度100mg/L 恒定不变.实验结果表明,在单组分光催化纳...在多组分条件下通过采用悬浮型光催化纳滤膜反应器进行目标污染底物 H 酸的光催化降解效率及反应动力学研究,控制干扰污染物吐氏酸和变色酸浓度分别为5,10,20,25,40mg/L,控制 H 酸浓度100mg/L 恒定不变.实验结果表明,在单组分光催化纳滤膜反应器中,在Ct/C0≥0.7条件下,降解过程遵循L-H 零级(0-12min)与L-H一级(12-20min)的混合动力学模型;在多组分光催化纳滤膜反应器中,随着干扰物浓度的增加,在Ct/C0≥0.7条件下(约0-20min反应时间段)其降解过程均对应地遵循L-H一级反应动力学模型.通过实验进一步证实,H酸光催化降解动力学的改变主要由耦合光催化反应器内底物和光催化剂表面H酸的浓度差异性引起.展开更多
通过对内循环(IC)厌氧反应器进行改进,使其成为垂直式厌氧好氧一体化组合工艺,实现对高浓度DHA废水的耦合处理。试验采用高负荷、高进水浓度的方式对反应器的启动进行了分段研究,并分别对厌氧及好氧段有机物降解进行了效能分析。研究表...通过对内循环(IC)厌氧反应器进行改进,使其成为垂直式厌氧好氧一体化组合工艺,实现对高浓度DHA废水的耦合处理。试验采用高负荷、高进水浓度的方式对反应器的启动进行了分段研究,并分别对厌氧及好氧段有机物降解进行了效能分析。研究表明,启动初期采用DHA废水与生活污水混合进水的方式并控制反应器在中温条件下运行,可完成对反应器的快速启动。经60 d的调试运行,一体化反应器中厌氧段容积负荷达到10 kg COD/(m^3·d),COD去除率稳定在60%左右,好氧段容积负荷达到4 kg COD/(m^3·d),出水COD小于500 mg/L,满足《污水排入城镇下水道水质标准》(CJ 343-2010)。60 d后厌氧段颗粒污泥形状规则、密实,经扫描电镜观察发现,污泥表面具有较大孔隙且杆状菌占优势,好氧污泥在电子显微镜下可观察到钟虫。展开更多
文摘在多组分条件下通过采用悬浮型光催化纳滤膜反应器进行目标污染底物 H 酸的光催化降解效率及反应动力学研究,控制干扰污染物吐氏酸和变色酸浓度分别为5,10,20,25,40mg/L,控制 H 酸浓度100mg/L 恒定不变.实验结果表明,在单组分光催化纳滤膜反应器中,在Ct/C0≥0.7条件下,降解过程遵循L-H 零级(0-12min)与L-H一级(12-20min)的混合动力学模型;在多组分光催化纳滤膜反应器中,随着干扰物浓度的增加,在Ct/C0≥0.7条件下(约0-20min反应时间段)其降解过程均对应地遵循L-H一级反应动力学模型.通过实验进一步证实,H酸光催化降解动力学的改变主要由耦合光催化反应器内底物和光催化剂表面H酸的浓度差异性引起.
文摘通过对内循环(IC)厌氧反应器进行改进,使其成为垂直式厌氧好氧一体化组合工艺,实现对高浓度DHA废水的耦合处理。试验采用高负荷、高进水浓度的方式对反应器的启动进行了分段研究,并分别对厌氧及好氧段有机物降解进行了效能分析。研究表明,启动初期采用DHA废水与生活污水混合进水的方式并控制反应器在中温条件下运行,可完成对反应器的快速启动。经60 d的调试运行,一体化反应器中厌氧段容积负荷达到10 kg COD/(m^3·d),COD去除率稳定在60%左右,好氧段容积负荷达到4 kg COD/(m^3·d),出水COD小于500 mg/L,满足《污水排入城镇下水道水质标准》(CJ 343-2010)。60 d后厌氧段颗粒污泥形状规则、密实,经扫描电镜观察发现,污泥表面具有较大孔隙且杆状菌占优势,好氧污泥在电子显微镜下可观察到钟虫。