针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以...针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以较好地解决在遥感图像中分辨率较高所造成的非道路地物对目标的噪声影响。该方法使用SLIC超像素分割算法对影像进行分割处理,再用改进的K-means聚类算法对分割后的超像素影像进行非监督分类,根据GVI值对分类后的影像中的植被及水体信息进行过滤,对过滤后的影像进行基于OTSU的分割,最后对分割影像进行后处理获得完整道路网。经过定性和定量分析后得出,此方法在道路提取上有较好的表现。展开更多
文摘针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以较好地解决在遥感图像中分辨率较高所造成的非道路地物对目标的噪声影响。该方法使用SLIC超像素分割算法对影像进行分割处理,再用改进的K-means聚类算法对分割后的超像素影像进行非监督分类,根据GVI值对分类后的影像中的植被及水体信息进行过滤,对过滤后的影像进行基于OTSU的分割,最后对分割影像进行后处理获得完整道路网。经过定性和定量分析后得出,此方法在道路提取上有较好的表现。