期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
数字孪生与深度学习融合驱动的采煤机健康状态预测 被引量:45
1
作者 丁华 杨亮亮 +1 位作者 杨兆建 王义亮 《中国机械工程》 EI CAS CSCD 北大核心 2020年第7期815-823,共9页
针对处于恶劣工作环境的采煤机状态预测与维护困难的问题,结合数字孪生高逼真度行为仿真特性和深度学习强大的数据挖掘能力,提出数字孪生与深度学习融合驱动的采煤机健康状态预测方法。基于物理空间多物理参数构建采煤机数字孪生体,通... 针对处于恶劣工作环境的采煤机状态预测与维护困难的问题,结合数字孪生高逼真度行为仿真特性和深度学习强大的数据挖掘能力,提出数字孪生与深度学习融合驱动的采煤机健康状态预测方法。基于物理空间多物理参数构建采煤机数字孪生体,通过在虚拟空间的可视化展示与分析实现健康状态预判;建立基于深度学习的采煤机关键零件剩余寿命预测模型,实现实时监测数据驱动下的零件剩余寿命的在线预测;综合数字孪生体状态和剩余寿命值,实现采煤机健康状态预测。通过试验验证了该方法的有效性,为采煤机健康状态预测与管理提供新思路。 展开更多
关键词 数字孪生 深度学习 采煤机 健康预测 剩余寿命预测
下载PDF
基于LSTM-DBN的航空发动机剩余寿命预测 被引量:31
2
作者 李京峰 陈云翔 +1 位作者 项华春 蔡忠义 《系统工程与电子技术》 EI CSCD 北大核心 2020年第7期1637-1644,共8页
针对航空发动机剩余寿命(remaining useful life,RUL)预测中多传感器监测数据维度高、规模大以及时间序列信息考虑不充分等问题,提出一种融合长短时记忆(long short-term memory,LSTM)网络和深度置信网络(deep belief network,DBN)的RU... 针对航空发动机剩余寿命(remaining useful life,RUL)预测中多传感器监测数据维度高、规模大以及时间序列信息考虑不充分等问题,提出一种融合长短时记忆(long short-term memory,LSTM)网络和深度置信网络(deep belief network,DBN)的RUL预测方法。首先,利用LSTM分别对单一传感器进行时间序列预测。其次,将预测结果整合输入到DBN进行健康指标提取。再次,结合健康指标预测曲线和失效阈值得到RUL预测结果。最后,利用商用模块化航空推进系统仿真数据集开展实验,并与已有方法进行对比分析,验证了该方法的可行性和有效性。 展开更多
关键词 长短时记忆网络 深度置信网络 健康指标 剩余寿命预测
下载PDF
基于BiLSTM与注意力机制的剩余使用寿命预测研究 被引量:28
3
作者 赵志宏 李晴 +1 位作者 杨绍普 李乐豪 《振动与冲击》 EI CSCD 北大核心 2022年第6期44-50,196,共8页
剩余使用寿命(remaining useful life,RUL)预测在现代工业中占有重要地位,如何提高剩余使用寿命预测的准确性已经成为当今研究的热点。传统的剩余使用寿命预测方式是采用基于模型的方法进行预测,需要人工提取特征,不能自动地学习特征信... 剩余使用寿命(remaining useful life,RUL)预测在现代工业中占有重要地位,如何提高剩余使用寿命预测的准确性已经成为当今研究的热点。传统的剩余使用寿命预测方式是采用基于模型的方法进行预测,需要人工提取特征,不能自动地学习特征信息,无法获得原始数据与剩余使用寿命之间的复杂映射关系。该研究提出一种基于双向长短期记忆网络(bi-directional long short term memory,BiLSTM)与注意力机制的剩余使用寿命预测模型,与已有的剩余使用寿命预测方法不同之处在于:直接将获取的原始时间序列输入到BiLSTM神经网络中,通过BiLSTM自动地提取设备状态特征信息;然后利用注意力机制对特征分配不同的权重,这样可以更准确地提取设备的健康状态信息。进行了发动机和轴承剩余使用寿命预测试验,并与长短期记忆网络(long short-term memory,LSTM)模型和BiLSTM剩余使用寿命预测模型进行比较,试验结果表明提出的BiLSTM与注意力机制相结合的模型能够更准确地进行剩余使用寿命预测,具有应用价值。 展开更多
关键词 双向长短期记忆网络(BiLSTM) 注意力机制 剩余使用寿命(rul)预测 深度学习 神经网络
下载PDF
基于退化特征相似性的航空发动机寿命预测 被引量:20
4
作者 张妍 王村松 +1 位作者 陆宁云 姜斌 《系统工程与电子技术》 EI CSCD 北大核心 2019年第6期1414-1421,共8页
针对航空发动机结构复杂、性能退化参数众多、寿命预测精度低等问题,提出了一种基于退化特征相似性的寿命预测方法。首先通过基于Relief算法的退化特征筛选、基于主成分分析(principal component analysis,PCA)的特征提取和基于核函数... 针对航空发动机结构复杂、性能退化参数众多、寿命预测精度低等问题,提出了一种基于退化特征相似性的寿命预测方法。首先通过基于Relief算法的退化特征筛选、基于主成分分析(principal component analysis,PCA)的特征提取和基于核函数的特征平滑,提取低维正交多变量退化特征;然后进行特征的相似性匹配,寻找与当前样本特征片段最相似的一组历史样本中的特征片段集合,将这些片段对应的RUL信息融合并采用密度加权方法得到当前样本的寿命预测估计值;最后通过美国国家航空航天局(national aeronautics and space administration,NASA)提供的航空涡轮扇发动机仿真数据集验证了该方法的有效性,其寿命预测性能高于现有几种代表性方法。 展开更多
关键词 寿命预测 性能衰退 Relief特征选择 相似性 密度加权
下载PDF
基于二元逆高斯过程的腐蚀输油管道剩余寿命预测 被引量:12
5
作者 王艺斐 苏春 谢明江 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期1038-1044,共7页
考虑到输油管道随着服役时间的增加会出现不可逆转的性能退化,影响管道运行的安全性和可靠性,提出一种基于二元逆高斯(IG)过程的腐蚀输油管道剩余寿命(RUL)预测方法.首先,采用二元IG过程分别建立管道腐蚀深度和剩余强度2种性能退化量模... 考虑到输油管道随着服役时间的增加会出现不可逆转的性能退化,影响管道运行的安全性和可靠性,提出一种基于二元逆高斯(IG)过程的腐蚀输油管道剩余寿命(RUL)预测方法.首先,采用二元IG过程分别建立管道腐蚀深度和剩余强度2种性能退化量模型,得到基于管道腐蚀深度和剩余强度的RUL边缘概率密度函数;采用Copula函数建立双性能指标的管道RUL联合概率密度函数,采用期望值最大化(EM)算法估计模型参数,完成管道RUL预测.最后以某输油管道实际的腐蚀退化数据为例,验证所提出方法的可行性和有效性.结果表明:所提出方法的最大误差为10.7%,最小误差为2.2%,能够有效地预测管道RUL;采用IG过程预测管道寿命的误差相对较小,具有较高的预测精度. 展开更多
关键词 输油管道 二元逆高斯(IG)过程 COPULA函数 剩余寿命(rul)预测
下载PDF
锂离子电池状态估计与剩余寿命预测方法综述 被引量:11
6
作者 赵珈卉 田立亭 程林 《发电技术》 CSCD 2023年第1期1-17,共17页
准确估计锂离子电池荷电状态(state of charge,SOC)、电池健康度(state of health,SOH)以及预测电池剩余寿命(remaining useful life,RUL)是电池管理的重要内容,对延长电池寿命和保证电池系统可靠性具有重要意义。各国研究人员对电池状... 准确估计锂离子电池荷电状态(state of charge,SOC)、电池健康度(state of health,SOH)以及预测电池剩余寿命(remaining useful life,RUL)是电池管理的重要内容,对延长电池寿命和保证电池系统可靠性具有重要意义。各国研究人员对电池状态评估与寿命预测方法进行了大量研究,提出了多种方法。首先,介绍了SOC与SOH的定义及已有估算方法,并进行了对比;然后,介绍了RUL的定义,并对主要方法进行了分类与比较;最后,总结了锂离子电池状态估计与寿命预测方面存在的挑战,并提出了未来的发展方向。 展开更多
关键词 锂离子电池 荷电状态(SOC)估算 健康度(SOH)估算 剩余寿命(rul)预测
下载PDF
基于并行多通道卷积长短时记忆网络的轴承寿命预测方法 被引量:12
7
作者 曾大懿 杨基宏 +2 位作者 邹益胜 张继冬 宋小欣 《中国机械工程》 EI CAS CSCD 北大核心 2020年第20期2454-2462,2471,共10页
在预测轴承剩余使用寿命时,数据间的时序特性是一个可以利用的重要隐藏信息。为了更好地提取具有时序信息的特征用于预测,提出了一种基于并行多通道卷积长短时记忆网络(PMCCNN-LSTM)的剩余使用寿命预测模型。该模型主要由两部分组成:前... 在预测轴承剩余使用寿命时,数据间的时序特性是一个可以利用的重要隐藏信息。为了更好地提取具有时序信息的特征用于预测,提出了一种基于并行多通道卷积长短时记忆网络(PMCCNN-LSTM)的剩余使用寿命预测模型。该模型主要由两部分组成:前端为并行多通道卷积网络(PMCCNN),提取信号特征,挖掘数据的时序特性,并采用逐层训练和微调的方式提升参数的收敛性;后端为长短时记忆(LSTM)网络,基于特征进行剩余使用寿命预测,并采用加权平均的方法对预测结果进行平滑处理。在一个轴承加速寿命实验的公开数据集上使用留一法验证了该模型的准确性,实验结果表明:所提模型的平均误差与最大误差分别比传统的卷积神经网络(CNN)低23.38%和15.84%,比传统的LSTM低24.14%和19.01%,比卷积长短时记忆网络(CNN-LSTM)低30.32%和23.09%。 展开更多
关键词 多通道 并行多通道卷积神经网络 长短时记忆网络 轴承 剩余使用寿命预测
下载PDF
装备系统剩余使用寿命预测技术研究进展 被引量:10
8
作者 郭忠义 李永华 +3 位作者 李关辉 彭志勇 张宁 于振中 《南京航空航天大学学报》 CAS CSCD 北大核心 2022年第3期341-364,共24页
社会的稳定发展离不开制造业的高水平发展,生产是制造业的关键步骤,长期持续稳定的产出依赖于装备系统的稳定运行。系统故障引起的停产势必会造成一定的经济损失。如何尽早地发现装备系统的故障来避免停工停产带来的经济损失,已经成为... 社会的稳定发展离不开制造业的高水平发展,生产是制造业的关键步骤,长期持续稳定的产出依赖于装备系统的稳定运行。系统故障引起的停产势必会造成一定的经济损失。如何尽早地发现装备系统的故障来避免停工停产带来的经济损失,已经成为了当前应用研究中的热点。采用定期人工检查的传统方法不仅提高了生产成本,还使得问题发现较为滞后,达不到实时监控的目的。而且,随着信息技术的高速发展,装备系统的监测也变得更加智能化。利用装备系统的历史数据检测其状态能够更敏捷、更高效地发现装备运行中的“亚健康”问题,能给装备管理者提供有益的决策支持。基于装备剩余使用寿命的数据预测,能够提供高效智能的解决方案,在工业领域有着宽广的应用前景。因此,本文聚焦于装备系统剩余使用寿命预测技术的研究进展,对近年来剩余使用寿命预测的研究进行归纳总结,并讨论各剩余使用寿命预测理论与方法的优缺点。最后,总结并展望装备系统剩余使用寿命预测技术的未来研究方向和发展趋势。 展开更多
关键词 剩余使用寿命预测 数据驱动模型 机器学习 神经网络 迁移学习
下载PDF
基于SMIV-1DCNN的燃气轮机剩余使用寿命预测方法研究 被引量:9
9
作者 韩国栋 曹云鹏 +1 位作者 徐志强 王伟影 《热能动力工程》 CAS CSCD 北大核心 2022年第2期25-32,共8页
为了实现船用燃气轮机剩余使用寿命的预测,对燃气轮机健康监测参数进行斯皮尔曼(Spearman)相关关系分析,采用平均影响值(Mean Impact Value,MIV)进一步分析监测参数对性能退化的敏感性,筛选出敏感特征;对得到的燃气轮机特征参数进行预处... 为了实现船用燃气轮机剩余使用寿命的预测,对燃气轮机健康监测参数进行斯皮尔曼(Spearman)相关关系分析,采用平均影响值(Mean Impact Value,MIV)进一步分析监测参数对性能退化的敏感性,筛选出敏感特征;对得到的燃气轮机特征参数进行预处理,以消除外界环境的影响;研究了一维卷积神经网络(One Dimension Convolutional Neural Networks,1DCNN),挖掘滑窗特征参数与运行时间的映射关系,实现燃气轮机剩余使用寿命预测。基于美国国家航天局发布的航空发动机退化数据集,验证了SMIV-1DCNN剩余使用寿命预测方法的有效性;开展了船用燃气轮机性能退化剩余使用寿命预测仿真试验。仿真试验结果表明,该方法不受燃气轮机初始状态影响,剩余使用寿命预测绝对误差56.10、平均绝对百分误差107.87、均方误差70.95,预测性能优于BP神经网络、LSTM神经网络与GRU神经网络。 展开更多
关键词 燃气轮机 剩余使用寿命 预测 卷积神经网络 特征降维
原文传递
基于数据驱动的锂离子电池RUL预测综述 被引量:8
10
作者 张若可 郭永芳 +1 位作者 余湘媛 胡晓亚 《电源学报》 CSCD 北大核心 2023年第5期182-190,共9页
剩余使用寿命预测技术对于锂离子电池的安全使用及维护具有重要意义。由于锂离子电池的长寿命特性以及复杂的非线性退化机制,目前剩余使用寿命预测仍是电池状态预测的难点问题。数据驱动方法不需要考虑电池内部电化学特性,而仅从数据角... 剩余使用寿命预测技术对于锂离子电池的安全使用及维护具有重要意义。由于锂离子电池的长寿命特性以及复杂的非线性退化机制,目前剩余使用寿命预测仍是电池状态预测的难点问题。数据驱动方法不需要考虑电池内部电化学特性,而仅从数据角度出发,是目前主流的预测方法。通过实例介绍了剩余使用寿命概念,分类阐述了各种基于数据驱动的预测方法,并对其优缺点进行了分析。最后,针对现有方法的不足,提出未来需要改进的方向。 展开更多
关键词 锂离子电池 剩余使用寿命 数据驱动 预测方法
下载PDF
基于遗传算法选优的集成手段与时序卷积网络的涡扇发动机剩余寿命预测 被引量:9
11
作者 朱霖 宁芊 +1 位作者 雷印杰 陈炳才 《计算机应用》 CSCD 北大核心 2020年第12期3534-3540,共7页
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行。而对涡扇发动机的剩余寿命(RUL)进行判断,是设备监测与维护的重要一环。针对涡扇发动机监测过程中存在的工况复杂、监测数据多样、时间跨度长等特... 涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行。而对涡扇发动机的剩余寿命(RUL)进行判断,是设备监测与维护的重要一环。针对涡扇发动机监测过程中存在的工况复杂、监测数据多样、时间跨度长等特点,提出了一种遗传算法优选时序卷积网络(TCN)基模型的集成方法(GASENTCN)的涡扇发动机剩余寿命预测模型。首先,利用TCN捕获长跨度下的数据内在关系,从而对RUL作出预测;然后,应用GASEN集成多个独立的TCN,以增强模型的泛化性能;最后,在通用的商用模块化航空推进系统模拟模型(CMAPSS)数据集上,对所提模型与当下流行的机器学习方法和其他的深度神经网络进行了比较。实验结果表明,在多种不同的运行模式和故障条件下,与流行的双向长短期记忆(Bi-LSTM)网络相比,所提模型都有着更高的预测准确率与更低的预测误差。以FD001数据集为例,在该数据集上所提模型的均方根误差(RMSE)相较Bi-LSTM低17.08%,相对准确率(Accuracy)相较Bi-LSTM高12.16%。所提模型在设备的智能检修与维护方面有着较好的应用前景。 展开更多
关键词 数据驱动模型 剩余寿命预测 时序卷积网络 集成方法 涡扇发动机
下载PDF
统计模式识别和自回归滑动平均模型在设备剩余寿命预测中的应用 被引量:8
12
作者 廖雯竹 潘尔顺 +1 位作者 王莹 奚立峰 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第7期1000-1005,共6页
为了对设备预知性维护研究提供支持,采用统计模式识别(SPR)方法对设备进行性能评估,获取设备健康指标;再运用自回归滑动平均模型(ARMA)对设备剩余寿命进行预测,建立了基于设备健康状况的设备剩余寿命预测模型.对生产过程中刀具加工设备... 为了对设备预知性维护研究提供支持,采用统计模式识别(SPR)方法对设备进行性能评估,获取设备健康指标;再运用自回归滑动平均模型(ARMA)对设备剩余寿命进行预测,建立了基于设备健康状况的设备剩余寿命预测模型.对生产过程中刀具加工设备寿命预测进行分析和验证结果表明,该设备评估和预测方法是有效且实用的. 展开更多
关键词 健康指标 统计模式识别 自回归滑动平均模型 剩余寿命 预测
下载PDF
Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling 被引量:6
13
作者 CAI Zhongyi WANG Zezhou +2 位作者 CHEN Yunxiang GUO Jiansheng XIANG Huachun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期194-205,共12页
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipmen... Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction. 展开更多
关键词 remaining useful life(rul)prediction Wiener process dual nonlinearity measurement error individual difference
下载PDF
基于整群抽样和支持向量回归模型的高功率半导体激光器剩余使用寿命预测 被引量:7
14
作者 严建文 钟小虎 +1 位作者 范煜 郭三敏 《中国机械工程》 EI CAS CSCD 北大核心 2021年第13期1523-1529,共7页
剩余使用寿命(RUL)预测是高功率半导体激光器在各种环境应力作用下可靠性评估的核心问题。在实际应用中,现有支持向量回归(SVR)方法均侧重于保证所训练模型的回归曲线的整体误差最小,以追求方法的泛化性,这往往造成关键预警阶段特别是... 剩余使用寿命(RUL)预测是高功率半导体激光器在各种环境应力作用下可靠性评估的核心问题。在实际应用中,现有支持向量回归(SVR)方法均侧重于保证所训练模型的回归曲线的整体误差最小,以追求方法的泛化性,这往往造成关键预警阶段特别是临近故障失效前的预测结果不理想,不能可靠地支持维护决策。提出了一种基于整群抽样的SVR模型训练方法,对测试样本后期观测数据进行多次整群抽样后用于SVR模型测试,SVR模型中的参数使得SVR模型对训练样本的后期数据拟合得更好。实例分析验证了该方法的有效性和稳健性,研究结果表明,所提方法的预测性能和实用价值优于现有几种代表性的小样本分析方法。 展开更多
关键词 剩余使用寿命预测 整群抽样 支持向量回归 半导体激光器
下载PDF
基于相关向量机的高速列车牵引系统剩余寿命预测 被引量:7
15
作者 王秀丽 姜斌 陆宁云 《自动化学报》 EI CSCD 北大核心 2019年第12期2303-2311,共9页
高速列车牵引系统在运行过程中总是受到诸多不确定因素的影响,例如,由于列车的负载、运行环境及元器件的老化引起的不确定性,不确定因素不可避免地影响牵引系统剩余寿命的预测精度.为了提高不确定情景下剩余寿命预测的准确性,本文首先... 高速列车牵引系统在运行过程中总是受到诸多不确定因素的影响,例如,由于列车的负载、运行环境及元器件的老化引起的不确定性,不确定因素不可避免地影响牵引系统剩余寿命的预测精度.为了提高不确定情景下剩余寿命预测的准确性,本文首先采用改进的相关向量机(Relevance vector machine,RVM)方法,建立鲁棒性能良好的多步回归模型,由于t分布比常用的高斯分布更具有鲁棒性,通过权重和随机误差服从t分布而非高斯分布,改进了相关向量机回归模型,随后将超参数的先验一并融入似然函数,通过最大化似然函数估计未知的超参数,此外,利用首达时间方法从概率角度对剩余寿命进行了预测,最后通过牵引系统中电容器退化的案例,与传统的相关向量机方法、自回归方法和支持向量机方法进行对比,验证了所提算法的有效性. 展开更多
关键词 相关向量机 牵引系统 剩余寿命预测 首达时间 T分布
下载PDF
基于深度可分离卷积神经网络轴承剩余寿命预测 被引量:6
16
作者 徐海铭 夏乔阳 +1 位作者 李勇 章兰珠 《机械强度》 CAS CSCD 北大核心 2022年第4期763-771,共9页
为进行轴承剩余寿命(Remaining Useful Life,RUL)预测,采用小波-谱峭度分析方法,首先对轴承振动序列信号进行小波包分解,并以谱峭度作为指标,确定故障特征频带并进行信号重构,然后,根据其频谱特征判断轴承是否发生故障,最终确定轴承振... 为进行轴承剩余寿命(Remaining Useful Life,RUL)预测,采用小波-谱峭度分析方法,首先对轴承振动序列信号进行小波包分解,并以谱峭度作为指标,确定故障特征频带并进行信号重构,然后,根据其频谱特征判断轴承是否发生故障,最终确定轴承振动序列信号的初始故障点(Incipient Fault Point,IFP)。在此基础上,将引入注意力(Attention)机制的一维深度可分离卷积神经网络用于轴承初始故障点之后振动信号特征的提取,相比传统卷积神经网络,深度可分离卷积层可减少网络训练参数个数,加快网络训练速度。实验结果表明,注意力机制的引入使网络能够聚焦信号中关键的特征,为重要特征赋予较大权重,避免人工处理特征的不足,利于有效特征提取,最终预测结果好于SVR、CNN、RNN等常用数据驱动方法。 展开更多
关键词 深度可分离卷积 注意力机制 神经网络 初始故障点 剩余寿命预测
下载PDF
多源传感监测线性退化设备数模联动的剩余寿命预测方法 被引量:5
17
作者 李天梅 司小胜 张建勋 《航空学报》 EI CAS CSCD 北大核心 2023年第8期89-107,共19页
随着先进传感与监测技术的快速发展,实时获取随机退化设备的多源传感监测数据已成为现实,如何有效融合多源传感监测数据以实现随机退化设备剩余寿命的精准预测成为剩余寿命预测领域的研究前沿。针对多源传感监测的线性随机退化设备,提... 随着先进传感与监测技术的快速发展,实时获取随机退化设备的多源传感监测数据已成为现实,如何有效融合多源传感监测数据以实现随机退化设备剩余寿命的精准预测成为剩余寿命预测领域的研究前沿。针对多源传感监测的线性随机退化设备,提出了一种考虑随机失效阈值的数模联动剩余寿命预测新方法。该方法在离线训练过程中,基于多源传感历史数据提取的复合健康指标及据此线性随机退化建模预测的寿命,构建综合寿命预测值与设备实际寿命的均方误差及寿命预测方差的优化目标函数,形成复合健康指标提取与随机退化建模的反馈闭环,对多源传感器融合系数和复合健康指标对应的随机失效阈值分布参数进行优化调整,以实现复合健康指标提取与随机退化建模的自动匹配,即数模联动。在线预测时,根据提出的数模联动方法,融合实际运行设备的多源传感监测数据以获取复合健康指标,然后采用随机模型对其演变过程进行建模。同时,为使模型实时反映设备当前状况,提出了一种退化模型参数的贝叶斯更新方法,在此基础上基于首达时间得到了考虑设备失效阈值随机性的剩余寿命概率分布。最后,基于航空发动机的多源传感监测数据,验证了所提方法在改善复合健康指标特性和提高剩余寿命预测准确性方面的有效性和优势。 展开更多
关键词 多源传感监测 剩余寿命预测 数模联动 退化建模 线性随机模型
原文传递
基于EG-SSMA-DELM的数控铣床刀具RUL预测研究 被引量:4
18
作者 张天骁 谷艳玲 安文杰 《机电工程》 CAS 北大核心 2023年第9期1464-1470,共7页
在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EO... 在工件的加工过程中,刀具失效会造成工件报废和关键部件损坏等问题,为此,提出了一种基于精英反向学习与黄金正弦优化黏菌算法结合深度极限学习机(EG-SSMA-DELM)的刀具磨损剩余寿命预测模型。首先,在黏菌算法(SMA)中,采用精英反向学习(EOBL)与黄金正弦(GSA)算法优化初始黏菌种群,提高了初始种群的多样性,改进了初始SMA搜索个体位置的更新方式,提高了算法的收敛速度与全局搜索能力,得到了最优参数;然后,利用改进的SMA算法,对深度极限学习机(DELM)中编码器的偏置与输入权重进行了联合优化,定义了不同数量的隐藏层神经元,利用ReLU激活函数对DELM的参数进行了理想排列;最后,根据最优参数,将投影特征输入DELM中进行了训练和预测,从而对刀具进行了剩余使用寿命预测。研究结果表明:相比于经典的深度极限学习机方法,EG-SSMA-DELM方法的均方根误差(RMSE)平均下降了19.60%,预测精度提高了16.00%;与其他深度学习算法相比,该算法模型具有更好的可行性、单调性和更强的鲁棒性。该算法模型对实际工程刀具磨损剩余寿命研究有一定的应用价值。 展开更多
关键词 剩余使用寿命 刀具寿命预测 精英反向学习 黄金正弦算法 黏菌算法 深度极限学习机
下载PDF
基于改进JRD及误差修正的轴承剩余寿命预测方法 被引量:1
19
作者 刘玉山 张旭帮 +2 位作者 王灵梅 孟恩隆 郭东杰 《机电工程》 北大核心 2024年第1期72-80,共9页
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL... 目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法。首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果。实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高。研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考。 展开更多
关键词 滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型
下载PDF
基于注意力机制的滚动轴承剩余使用寿命预测方法 被引量:4
20
作者 卢瑾 张永平 《机电工程》 CAS 北大核心 2023年第4期516-521,551,共7页
现有的轴承振动信号特征的提取方法过分依赖于专家的经验,同时在轴承的寿命预测过程中,存在因序列过长而导致的记忆力退化等问题,为此,结合卷积神经网络-注意力机制网络(CNN-attention)和基于注意力机制的Encoder-Decoder方法,提出了一... 现有的轴承振动信号特征的提取方法过分依赖于专家的经验,同时在轴承的寿命预测过程中,存在因序列过长而导致的记忆力退化等问题,为此,结合卷积神经网络-注意力机制网络(CNN-attention)和基于注意力机制的Encoder-Decoder方法,提出了一种滚动轴承剩余使用寿命(RUL)的预测模型(方法)。首先,利用快速傅里叶变换(FFT)方法,将滚动轴承的初始振动信号转换成频域幅值信号;然后,设计了一种基于注意力机制的模型:其中,利用CNN-attention进行了退化特征提取,利用基于注意力机制的Encoder-Decoder网络进行了RUL预测,并进一步在远距离信号传输中解决了循环神经网络记忆衰退的问题;最后,为了验证特征提取模型以及寿命预测模型的有效性,采用PHM 2012轴承退化数据集,通过轴承加速退化PRONOSTIA实验平台进行了实验,并将其所得结果与未采用注意力机制模型的预测结果以及其他文献方法所得结果进行了对比。实验结果表明:与其他方法相比,基于注意力机制模型的方法平均绝对误差分别降低了29.41%、32.00%、29.56%、32.34%,平均得分分别提高了0.39%、0.98%、0.82%、15.46%。研究结果表明:在轴承RUL预测方面,基于注意力机制的轴承剩余使用寿命预测模型(方法)是有效的。 展开更多
关键词 剩余使用寿命 卷积神经网络-注意力机制网络 编码器-解码器模型 退化特征提取 滚动轴承寿命预测模型 记忆力退化
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部