Refinery system, a typical example of process systems, is presented as complex network in this paper. The topology of this system is described by task-resource network and modeled as directed and weighted graph, in wh...Refinery system, a typical example of process systems, is presented as complex network in this paper. The topology of this system is described by task-resource network and modeled as directed and weighted graph, in which nodes represent various tasks and edges denote the resources exchanged among tasks. Using the properties of node degree distribution, strength distribution and other weighted quantities, we demonstrate the heterogeneity of the network and point out the relation between structural characters of vertices and the functionality of correspond- ing tasks. The above phenomena indicate that the design requirements and principles of production process contrib- ute to the heterogeneous features of the network. Besides, betweenness centrality of nodes can be used as an impor- tance indicator to provide additional information for decision making. The correlations between structure and weighted properties are investigated to further address the influence brought by production schemes in system con- nectivity patterns. Cascading failures model is employed to analyze the robustness of the network when targeted at- tack happens. Two capacity assignment strategies are compared in order to improve the robustness of the network at certain cost. The refinery system displays more reliable behavior when the protecting strategy considers heteroge- neous properties. This phenomenon further implies the structure-activity relationship of the refinery system and provides insightful suggestions for process system design. The results also indicate that robustness analysis is a _promising applicat!on of methodologies from complex networks to process system engineering..展开更多
The 14th Five-Year Plan period is a critical period for China to achieve high-quality development. Based on super-efficiency slacks-based measure(SBM) model, grey-related analysis(GRA) and other models, this paper stu...The 14th Five-Year Plan period is a critical period for China to achieve high-quality development. Based on super-efficiency slacks-based measure(SBM) model, grey-related analysis(GRA) and other models, this paper studies the heterogeneity of the coupling relationship among technological innovation, industrial transformation and environmental efficiency in the Huaihai Economic Zone during the period of 2005-2019. In addition, it analyzes the coupling mechanism of single and binary systems to the ternary system, which is of great significance for the collaborative symbiosis among systems. The findings are as follows. 1) The technological innovation, industrial transformation and environmental efficiency(TIE) systems of the Huaihai Economic Zone had significant spatial-temporal heterogeneity. Although their evaluation value fluctuated, the development trends are all positive. Ultimately, technological innovation is characterized by being high in the northeast and low in the southwest around Xuzhou, while other systems are relatively staggered in space. 2) The coupling of TIE systems is in transition, lack of orderly integration and benign interaction. However, the developing trend of interaction is also upward, and a spatial pattern driven by Xuzhou and Linyi as the dual cores has gradually formed. Moreover, the coupling is mostly manifested as outdated technological innovation and industrial transformation. Except for the final coordination of regenerative cities, the other resource types are all in transition. Cities in all traffic locations are still in transition. The overall system interaction of cities on Longhai Line(Lanzhou-Lianyungang Railway) is relatively optimal, and cities on Xinshi Line(Xinxiang-Rizhao Railway) are accelerating toward synergy. 3) The coupling status of TIE systems depends on the development of the single system and the interaction of the binary(2E) system. The coupling is closely related to technological innovation and Technology-Industry system,and is hindered by the inefficient inte展开更多
基金Supported by the National High Technology Research and Development Program of China (2012AA041102)the State Key Development Program for Basic Research of China (2012CB720500)
文摘Refinery system, a typical example of process systems, is presented as complex network in this paper. The topology of this system is described by task-resource network and modeled as directed and weighted graph, in which nodes represent various tasks and edges denote the resources exchanged among tasks. Using the properties of node degree distribution, strength distribution and other weighted quantities, we demonstrate the heterogeneity of the network and point out the relation between structural characters of vertices and the functionality of correspond- ing tasks. The above phenomena indicate that the design requirements and principles of production process contrib- ute to the heterogeneous features of the network. Besides, betweenness centrality of nodes can be used as an impor- tance indicator to provide additional information for decision making. The correlations between structure and weighted properties are investigated to further address the influence brought by production schemes in system con- nectivity patterns. Cascading failures model is employed to analyze the robustness of the network when targeted at- tack happens. Two capacity assignment strategies are compared in order to improve the robustness of the network at certain cost. The refinery system displays more reliable behavior when the protecting strategy considers heteroge- neous properties. This phenomenon further implies the structure-activity relationship of the refinery system and provides insightful suggestions for process system design. The results also indicate that robustness analysis is a _promising applicat!on of methodologies from complex networks to process system engineering..
基金Under the auspices of National Natural Science Foundation of China(No.41971158)National Social Science Foundation of China(No.20BJL106)+1 种基金Cultural Experts and Four batches Talents Independently Selected Topic Project(No.ZXGZ[2018]86)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0357)。
文摘The 14th Five-Year Plan period is a critical period for China to achieve high-quality development. Based on super-efficiency slacks-based measure(SBM) model, grey-related analysis(GRA) and other models, this paper studies the heterogeneity of the coupling relationship among technological innovation, industrial transformation and environmental efficiency in the Huaihai Economic Zone during the period of 2005-2019. In addition, it analyzes the coupling mechanism of single and binary systems to the ternary system, which is of great significance for the collaborative symbiosis among systems. The findings are as follows. 1) The technological innovation, industrial transformation and environmental efficiency(TIE) systems of the Huaihai Economic Zone had significant spatial-temporal heterogeneity. Although their evaluation value fluctuated, the development trends are all positive. Ultimately, technological innovation is characterized by being high in the northeast and low in the southwest around Xuzhou, while other systems are relatively staggered in space. 2) The coupling of TIE systems is in transition, lack of orderly integration and benign interaction. However, the developing trend of interaction is also upward, and a spatial pattern driven by Xuzhou and Linyi as the dual cores has gradually formed. Moreover, the coupling is mostly manifested as outdated technological innovation and industrial transformation. Except for the final coordination of regenerative cities, the other resource types are all in transition. Cities in all traffic locations are still in transition. The overall system interaction of cities on Longhai Line(Lanzhou-Lianyungang Railway) is relatively optimal, and cities on Xinshi Line(Xinxiang-Rizhao Railway) are accelerating toward synergy. 3) The coupling status of TIE systems depends on the development of the single system and the interaction of the binary(2E) system. The coupling is closely related to technological innovation and Technology-Industry system,and is hindered by the inefficient inte