To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we establishe...To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.展开更多
An extensive suite of igneous sills was intruded into the Tertiary sedimentary section of the Jiaojiang sag, East China Sea. This suite has been well imaged offshore through 2D and 3D seismic surveys, showing a close ...An extensive suite of igneous sills was intruded into the Tertiary sedimentary section of the Jiaojiang sag, East China Sea. This suite has been well imaged offshore through 2D and 3D seismic surveys, showing a close relationship with CO2 content in nearby gas discoveries. A new observational model, which incorporates simple upward propagation, simple horizontal propagation, and transgressive propagation, was proposed to interpret these sill intrusions. In this model, the source magma of the saucer-shaped sills was injected from their lowest points near the center. The transgressive propagation can be interpreted as a combination of the vertical and horizontal propagation. Most shallow sub-volcanic intrusions in the Jiaojiang sag exhibit fingered characteristics, both vertically and horizontally. The vertical fingered propagation produced saucer-shaped sills arranged in the flower style. Along the brims of lower sills could usually be found the upper sills, which are interpreted to have formed simultaneously with or later than the lower feeder sills. In the second type, the chilled paths of the older sills were reutilized by subsequent intrusions. The horizontal fingered propagation formed sheet intrusions that exhibit groove, lobate, tubular, and crevasse splay- like geometry in plan view. In 3D view, the sheet intrusions have still preserved the lower center and higher rim that similar with the sub-rounded saucer-shaped sills. Although fracture propagation may be important, flow inflation was the key mechanism of magma intrusion. Further consideration of the mechanisms underlying sill formation may help explain the fingered characteristics of sill propagation.展开更多
The hot compression experiments were performed to investigate the effects of hot deformation parameters on the flow stress of BT20(Ti-6Al-2Zr-1Mo-1V) titanium alloy. The results show that the flow stress decreases wit...The hot compression experiments were performed to investigate the effects of hot deformation parameters on the flow stress of BT20(Ti-6Al-2Zr-1Mo-1V) titanium alloy. The results show that the flow stress decreases with the increment of deformation temperature and increases with the growth of strain rate. The peak stress moves toward the direction of strain reducing and the strain rate sensitivity increases with the rising deformation temperature. There is obvious deformation heating created during hot deformation under relatively higher strain rate and lower deformation temperature. The improved back propagation(BP) neural network with 3-20-16-1 architecture has been employed to establish the prediction model of flow stress using deformation degree, deformation temperature and strain rate as input variables. The predicted values obtained by BP network agree well with the measured values, the relative error is within 6.5% for the sample data and not bigger than 9% for the non-sample data, which indicates that the ANNs adopted can predict the flow stress of BT20 alloy effectively and can be used as constitutive relationship system applied to FEM simulation of plastic deformation.展开更多
Centrifugal and shear forces are produced when solids or liquids rotate.Rotary systems and devices that use these forces,such as dynamic thin-film flow technology,are evolving continuously,improve material structure-p...Centrifugal and shear forces are produced when solids or liquids rotate.Rotary systems and devices that use these forces,such as dynamic thin-film flow technology,are evolving continuously,improve material structure-property relationships at the nanoscale,representing a rapidly thriving and expanding field of research high with green chemistry metrics,consolidated at the inception of science.The vortex fluidic device(VFD)provides many advantages over conventional batch processing,with fluidic waves causing high shear and producing large surface areas for micro-mixing as well as rapid mass and heat transfer,enabling reactions beyond diffusion control.Combining these abilities allows for a green and innovative approach to altering materials for various research and industry applications by controlling small-scale flows and regulating molecular and macromolecular chemical reactivity,self-organization phenomena,and the synthesis of novel materials.This review highlights the aptitude of the VFD as clean technology,with an increase in efficiency for a diversity of top-down,bottom-up,and novel material transformations which benefit from effective vortex-based processing to control material structure-property relationships.展开更多
Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the...Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.展开更多
基金This work was kindly supported by Na-tional Natural Science Foundation of China(No.39670308)
文摘To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.
基金supported by National Basic Research Program of China (973) under grant No.2009CB219400
文摘An extensive suite of igneous sills was intruded into the Tertiary sedimentary section of the Jiaojiang sag, East China Sea. This suite has been well imaged offshore through 2D and 3D seismic surveys, showing a close relationship with CO2 content in nearby gas discoveries. A new observational model, which incorporates simple upward propagation, simple horizontal propagation, and transgressive propagation, was proposed to interpret these sill intrusions. In this model, the source magma of the saucer-shaped sills was injected from their lowest points near the center. The transgressive propagation can be interpreted as a combination of the vertical and horizontal propagation. Most shallow sub-volcanic intrusions in the Jiaojiang sag exhibit fingered characteristics, both vertically and horizontally. The vertical fingered propagation produced saucer-shaped sills arranged in the flower style. Along the brims of lower sills could usually be found the upper sills, which are interpreted to have formed simultaneously with or later than the lower feeder sills. In the second type, the chilled paths of the older sills were reutilized by subsequent intrusions. The horizontal fingered propagation formed sheet intrusions that exhibit groove, lobate, tubular, and crevasse splay- like geometry in plan view. In 3D view, the sheet intrusions have still preserved the lower center and higher rim that similar with the sub-rounded saucer-shaped sills. Although fracture propagation may be important, flow inflation was the key mechanism of magma intrusion. Further consideration of the mechanisms underlying sill formation may help explain the fingered characteristics of sill propagation.
文摘The hot compression experiments were performed to investigate the effects of hot deformation parameters on the flow stress of BT20(Ti-6Al-2Zr-1Mo-1V) titanium alloy. The results show that the flow stress decreases with the increment of deformation temperature and increases with the growth of strain rate. The peak stress moves toward the direction of strain reducing and the strain rate sensitivity increases with the rising deformation temperature. There is obvious deformation heating created during hot deformation under relatively higher strain rate and lower deformation temperature. The improved back propagation(BP) neural network with 3-20-16-1 architecture has been employed to establish the prediction model of flow stress using deformation degree, deformation temperature and strain rate as input variables. The predicted values obtained by BP network agree well with the measured values, the relative error is within 6.5% for the sample data and not bigger than 9% for the non-sample data, which indicates that the ANNs adopted can predict the flow stress of BT20 alloy effectively and can be used as constitutive relationship system applied to FEM simulation of plastic deformation.
基金Postgraduate Research Scholarship and Flinders University Research Investment Fund 2022,and the Australian Research Council,Grant/Award Numbers:DP200101105,DP200101106。
文摘Centrifugal and shear forces are produced when solids or liquids rotate.Rotary systems and devices that use these forces,such as dynamic thin-film flow technology,are evolving continuously,improve material structure-property relationships at the nanoscale,representing a rapidly thriving and expanding field of research high with green chemistry metrics,consolidated at the inception of science.The vortex fluidic device(VFD)provides many advantages over conventional batch processing,with fluidic waves causing high shear and producing large surface areas for micro-mixing as well as rapid mass and heat transfer,enabling reactions beyond diffusion control.Combining these abilities allows for a green and innovative approach to altering materials for various research and industry applications by controlling small-scale flows and regulating molecular and macromolecular chemical reactivity,self-organization phenomena,and the synthesis of novel materials.This review highlights the aptitude of the VFD as clean technology,with an increase in efficiency for a diversity of top-down,bottom-up,and novel material transformations which benefit from effective vortex-based processing to control material structure-property relationships.
文摘Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%.