To predict aeroheating performance of hypersonic vehicles accurately in thermochemical nonequilibrium flows accompanied by rarefaction effect,a Nonlinear Coupled Constitutive Relations(NCCR)model coupled with Gupta’s...To predict aeroheating performance of hypersonic vehicles accurately in thermochemical nonequilibrium flows accompanied by rarefaction effect,a Nonlinear Coupled Constitutive Relations(NCCR)model coupled with Gupta’s chemical models and Park’s two-temperature model is firstly proposed in this paper.Three typical cases are intensively investigated for further validation,including hypersonic flows over a two-dimensional cylinder,a RAM-C II flight vehicle and a type HTV-2 flight vehicle.The results predicted by NCCR solution,such as heat flux coefficient and electron number densities,are in better agreement with those of direct simulation Monte Carlo or flight data than Navier-Stokes equations,especially in the extremely nonequilibrium regions,which indicates the potential of the newly-developed solution to capture both thermochemical and rarefied nonequilibrium effects.The comparisons between the present solver and NCCR model without a two-temperature model are also conducted to demonstrate the significance of vibrational energy source term in the accurate simulation of high-Mach flows.展开更多
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under par...This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term.展开更多
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a^1?) →H_2(X^1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energ...Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a^1?) →H_2(X^1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.展开更多
基金financially co-supported by the National Natural Science Foundation of China(Nos.12002306,U20B2007,11572284 and 6162790014)National Numerical Wind Tunnel Project,China(No.NNW2019ZT3-A08)。
文摘To predict aeroheating performance of hypersonic vehicles accurately in thermochemical nonequilibrium flows accompanied by rarefaction effect,a Nonlinear Coupled Constitutive Relations(NCCR)model coupled with Gupta’s chemical models and Park’s two-temperature model is firstly proposed in this paper.Three typical cases are intensively investigated for further validation,including hypersonic flows over a two-dimensional cylinder,a RAM-C II flight vehicle and a type HTV-2 flight vehicle.The results predicted by NCCR solution,such as heat flux coefficient and electron number densities,are in better agreement with those of direct simulation Monte Carlo or flight data than Navier-Stokes equations,especially in the extremely nonequilibrium regions,which indicates the potential of the newly-developed solution to capture both thermochemical and rarefied nonequilibrium effects.The comparisons between the present solver and NCCR model without a two-temperature model are also conducted to demonstrate the significance of vibrational energy source term in the accurate simulation of high-Mach flows.
基金supported by the National Natural Science Foundation of China (Grant No.60704037)the Natural Science Foundation of Hebei Province,China (Grant No.F2010001317)the Doctor Foundation of Yanshan University of China (Grant No.B451)
文摘This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474141and 11274149)the Program for Liaoning Excellent Talents in University,China(Grant No.LJQ2015040)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China(Grant No.2014-1685)the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oilthe China Postdoctoral Science Foundation(Grant No.2014M550158)
文摘Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a^1?) →H_2(X^1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.