The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with stand...The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with standard diet,high-fat diet(HFD),HFD supplemented with resveratrol,low-dose PU(LPU)and high-dose PU(HPU)for 8 weeks.Compared with HFD group,body weight was significantly lower in PU treatment groups,number of cardionwocytes and the protein level of myosin heavy chain 7B were significantly higher in PU treatment groups.Levels of 5-hydroxymethylcytosine and 5-formylcytosine were significantly lower in HFD group than in other groups.Compared with the HFD group,the protein level of ten-eleven translocation enzyme(TET)2 was significantly higher in PU treatment groups,p-AMP-activated protein kinase(AMPK)was significantly higher in LPU group.Levels of total antioxidant capacity and the protein levels of complexesⅡ/Ⅲ/Ⅴ,oxoglutarate dehydrogenase,succinate dehydrogenase B and fumarate hdrolase were significantly lower in HFD group than PU treatment group.The ratio of(succinic acid+fumaric acid)/a-ketoglutarate was significantly higher in HFD group than other groups.In conclusion,PU up-regulated TETs enzyme activities and TET2 protein stability through alleviating mitochondrial dysfunction and activating AMPK,so as to promote DNA demethylation,thus preventing obesity-related cardiac dysfunction.展开更多
Soybean(Glycine max(Linn.)Merr.)annual leguminous crop is cultivated all over the world.The occurrence of diseases has a great impact on the yield and quality of soybean.In this study,based on the RNA-seq of soybean v...Soybean(Glycine max(Linn.)Merr.)annual leguminous crop is cultivated all over the world.The occurrence of diseases has a great impact on the yield and quality of soybean.In this study,based on the RNA-seq of soybean variety M18,a complete CDS(Coding sequence)GmPR1L of the pathogenesis-related protein 1 family was obtained,which has the ability to resist fungal diseases.The overexpression vector and interference expression vector were transferred into tobacco NC89,and the resistance of transgenic tobacco(Nicotiana tabacum L.)to Botrytis cinerea infection was identified.The results show that:Compared with the control,the activities of related defense enzymes SOD(Superoxide dismutase),POD(Peroxidase),PAL(L-phenylalanine ammonia-lyase)and PPO(Polyphenol oxidase)in the over-expressed transgenic tobacco OEA1 and OEA2 increased to different degrees,and increased significantly at different infection time points.The activities of defense enzymes in the interfering strains IEA1 and IEA2 were significantly lower than those in the control strains.The results of resistance level identification showed that the disease spot rate of OEA1 was significantly lower than that of the control line,and the disease spot rate of OEA2 was significantly lower than that of the control line.The plaque rate of the interfering expression line IEA1-IEA2 was significantly higher than that of the control line.It is preliminarily believed that the process related protein GmPR1L can improve the resistance of tobacco to B.cinerea.展开更多
Clonostachys rosea (C. rosea) is a biocontrol agent that is used to combat and prevent phytopathogenic fungi attacks because of its ability to involve many factors and diverse modes of action. The reactions of C. rose...Clonostachys rosea (C. rosea) is a biocontrol agent that is used to combat and prevent phytopathogenic fungi attacks because of its ability to involve many factors and diverse modes of action. The reactions of C. rosea on the control of gray mold disease in tomato leaves were investigated in this study. To investigate the reactions of C. rosea in inducing resistance to tomato plants, three treatments, including Botrytis cinerea treatment (treatment B), C. rosea treatment (treatment C), C. rosea and B. cinerea treatment (treatment C + B) and water (control), to be applied on tomato leaves were set up. Disease severity was subsequently evaluated and compared with the control. The treatment of tomato leaves with C. rosea (15 μg/ml) significantly reduced the disease index after inoculation and severity of gray mold caused by Botrytis cinerea. The results indicated that the C. rosea treatment stimulated the activity of the defense related enzymes: Peroxidases (POX), lipoxygenases (LOX) and glutathione S-transferases (GST), and the treatment C + B reduced the incidence and severity of the gray mold. Furthermore, C. rosea treatment increased the activity of pathogenesis related proteins PR1. Therefore, our results suggest that C. rosea could enhance the resistance of tomato plants to gray mold through the activation of defense genes and via the enhancement of defense-related enzymatic activities.展开更多
Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the eff...Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the effects of wheat straw incorporation on SOC fractions and C turnover related enzyme activities in a paddy field in subtropical China.Soil samples were collected from 0-10 cm and 10-20 cm depths after rice harvesting.The total SOC concentrations were higher in the high rate of wheat straw incorporation treatment(NPKS2)than in the not fertilized control(CK)(P<0.05).The concentrations of labile C fractions[i.e.,water soluble organic C(WSOC),hot-water soluble organic C(HWSOC),microbial biomass C(MBC),and easily oxidizable C(EOC)],were higher in the moderate NPKS1 and NPKS2 treatments than in CK and the fertilized treatment without straw(NPK)(P<0.05).The geometric means of labile C(GMC)and C pool management index(CPMI)values were highest in NPKS2(P<0.05).The SOC concentrations correlated positively with the labile C fractions(P<0.05).Soil cellulase activity and the geometric mean of enzyme activities(GMea)were higher in NPKS2 than in CK in all soil layers(P<0.05),and the invertase activity was higher in NPKS2 than in CK in the 0-10 cm layer(P<0.05).Stepwise multiple linear regression indicated that the formation of the SOC,WSOC,HWSOC,MBC,and EOC was mostly enhanced by the cellulase and invertase activities(P<0.05).Therefore,the high rate of wheat straw incorporation may be recommended to increase soil C pool levels and soil fertility in subtropical paddy soils.展开更多
Induced-acetaldehyde toxic effects on gluatathione [GSH] metabolism and sulfhydryl (SH) groups in liver and in brain of female albino rats with reference to age was studied.The total -SH groups were decreased whereas ...Induced-acetaldehyde toxic effects on gluatathione [GSH] metabolism and sulfhydryl (SH) groups in liver and in brain of female albino rats with reference to age was studied.The total -SH groups were decreased whereas the specific activities of glutathione-S-transferase [GST] and glutathione peroxidase [GP0] were increased in acetaldehyde treated rats. However, the specific activity levels of glutathione reductase [GR] and Γ-glutamylcysteine synthetase [Γ-GCS] were decreased. In general, acetaldehyde indueed changes in the specific activities of the enzymes that increase with increasing age展开更多
The cell activity of adipose-derived stem cells(ADSCs)is affected by the intracellular reactive oxygen species(ROS)and the level of autophagy.Previous studies reveal that acetyl-L-carnitine(ALC)possesses capacities of...The cell activity of adipose-derived stem cells(ADSCs)is affected by the intracellular reactive oxygen species(ROS)and the level of autophagy.Previous studies reveal that acetyl-L-carnitine(ALC)possesses capacities of resisting oxidative stress and regulating autophagy.Activating molecule in Beclin1-regulated autophagy protein 1(AMBRA1)plays a key role in initiating Beclin1-regulated autophagy.In the present study,we discovered ALC pretreatment(1 mM,24 h)significantly increased the activity of ADSCs exposed to H_(2)O_(2)(100μM,2 h)in vitro with improved stemness,and reduced the production of intracellular ROS.In addition,we found for the first time that ALC treatment up-regulated autophagy of ADSCs through strengthening the expressions of Beclin1 and AMBRA1 synchronously,which might be involved in the protective effect of ALC.展开更多
基金supported by the Natural Science Foundation of Shandong Province (ZR2020QH294 and ZR2021QH342)。
文摘The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with standard diet,high-fat diet(HFD),HFD supplemented with resveratrol,low-dose PU(LPU)and high-dose PU(HPU)for 8 weeks.Compared with HFD group,body weight was significantly lower in PU treatment groups,number of cardionwocytes and the protein level of myosin heavy chain 7B were significantly higher in PU treatment groups.Levels of 5-hydroxymethylcytosine and 5-formylcytosine were significantly lower in HFD group than in other groups.Compared with the HFD group,the protein level of ten-eleven translocation enzyme(TET)2 was significantly higher in PU treatment groups,p-AMP-activated protein kinase(AMPK)was significantly higher in LPU group.Levels of total antioxidant capacity and the protein levels of complexesⅡ/Ⅲ/Ⅴ,oxoglutarate dehydrogenase,succinate dehydrogenase B and fumarate hdrolase were significantly lower in HFD group than PU treatment group.The ratio of(succinic acid+fumaric acid)/a-ketoglutarate was significantly higher in HFD group than other groups.In conclusion,PU up-regulated TETs enzyme activities and TET2 protein stability through alleviating mitochondrial dysfunction and activating AMPK,so as to promote DNA demethylation,thus preventing obesity-related cardiac dysfunction.
基金This work was supported by Major Science and Technology Projects(20210302002NC)Jilin Province Science and Technology Development Plan Project,Grant Number 20190103120JH+2 种基金Jilin Province Science and Technology Development Plan—Outstanding Young Talents Fund Project,Grant Number 20190103120JThe Fourth Batch of Jilin Province Youth Science and Technology Talent Support Project,Grant Number QT202020National Natural Science Foundation of China Projects,Grant Number 31801381.
文摘Soybean(Glycine max(Linn.)Merr.)annual leguminous crop is cultivated all over the world.The occurrence of diseases has a great impact on the yield and quality of soybean.In this study,based on the RNA-seq of soybean variety M18,a complete CDS(Coding sequence)GmPR1L of the pathogenesis-related protein 1 family was obtained,which has the ability to resist fungal diseases.The overexpression vector and interference expression vector were transferred into tobacco NC89,and the resistance of transgenic tobacco(Nicotiana tabacum L.)to Botrytis cinerea infection was identified.The results show that:Compared with the control,the activities of related defense enzymes SOD(Superoxide dismutase),POD(Peroxidase),PAL(L-phenylalanine ammonia-lyase)and PPO(Polyphenol oxidase)in the over-expressed transgenic tobacco OEA1 and OEA2 increased to different degrees,and increased significantly at different infection time points.The activities of defense enzymes in the interfering strains IEA1 and IEA2 were significantly lower than those in the control strains.The results of resistance level identification showed that the disease spot rate of OEA1 was significantly lower than that of the control line,and the disease spot rate of OEA2 was significantly lower than that of the control line.The plaque rate of the interfering expression line IEA1-IEA2 was significantly higher than that of the control line.It is preliminarily believed that the process related protein GmPR1L can improve the resistance of tobacco to B.cinerea.
文摘Clonostachys rosea (C. rosea) is a biocontrol agent that is used to combat and prevent phytopathogenic fungi attacks because of its ability to involve many factors and diverse modes of action. The reactions of C. rosea on the control of gray mold disease in tomato leaves were investigated in this study. To investigate the reactions of C. rosea in inducing resistance to tomato plants, three treatments, including Botrytis cinerea treatment (treatment B), C. rosea treatment (treatment C), C. rosea and B. cinerea treatment (treatment C + B) and water (control), to be applied on tomato leaves were set up. Disease severity was subsequently evaluated and compared with the control. The treatment of tomato leaves with C. rosea (15 μg/ml) significantly reduced the disease index after inoculation and severity of gray mold caused by Botrytis cinerea. The results indicated that the C. rosea treatment stimulated the activity of the defense related enzymes: Peroxidases (POX), lipoxygenases (LOX) and glutathione S-transferases (GST), and the treatment C + B reduced the incidence and severity of the gray mold. Furthermore, C. rosea treatment increased the activity of pathogenesis related proteins PR1. Therefore, our results suggest that C. rosea could enhance the resistance of tomato plants to gray mold through the activation of defense genes and via the enhancement of defense-related enzymatic activities.
基金This work was funded by the Shanghai Agriculture Applied Technology Development Program,China(Grant No.G20190308)the National Key Research and Development Program of China(2016YFD0801106).
文摘Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the effects of wheat straw incorporation on SOC fractions and C turnover related enzyme activities in a paddy field in subtropical China.Soil samples were collected from 0-10 cm and 10-20 cm depths after rice harvesting.The total SOC concentrations were higher in the high rate of wheat straw incorporation treatment(NPKS2)than in the not fertilized control(CK)(P<0.05).The concentrations of labile C fractions[i.e.,water soluble organic C(WSOC),hot-water soluble organic C(HWSOC),microbial biomass C(MBC),and easily oxidizable C(EOC)],were higher in the moderate NPKS1 and NPKS2 treatments than in CK and the fertilized treatment without straw(NPK)(P<0.05).The geometric means of labile C(GMC)and C pool management index(CPMI)values were highest in NPKS2(P<0.05).The SOC concentrations correlated positively with the labile C fractions(P<0.05).Soil cellulase activity and the geometric mean of enzyme activities(GMea)were higher in NPKS2 than in CK in all soil layers(P<0.05),and the invertase activity was higher in NPKS2 than in CK in the 0-10 cm layer(P<0.05).Stepwise multiple linear regression indicated that the formation of the SOC,WSOC,HWSOC,MBC,and EOC was mostly enhanced by the cellulase and invertase activities(P<0.05).Therefore,the high rate of wheat straw incorporation may be recommended to increase soil C pool levels and soil fertility in subtropical paddy soils.
文摘Induced-acetaldehyde toxic effects on gluatathione [GSH] metabolism and sulfhydryl (SH) groups in liver and in brain of female albino rats with reference to age was studied.The total -SH groups were decreased whereas the specific activities of glutathione-S-transferase [GST] and glutathione peroxidase [GP0] were increased in acetaldehyde treated rats. However, the specific activity levels of glutathione reductase [GR] and Γ-glutamylcysteine synthetase [Γ-GCS] were decreased. In general, acetaldehyde indueed changes in the specific activities of the enzymes that increase with increasing age
基金funded by the National Natural Science Foundation of China[grant no.81971850]a grant from the Municipal Science and Technology Bureau of Wenzhou[2018Y0383,2019Y0538].
文摘The cell activity of adipose-derived stem cells(ADSCs)is affected by the intracellular reactive oxygen species(ROS)and the level of autophagy.Previous studies reveal that acetyl-L-carnitine(ALC)possesses capacities of resisting oxidative stress and regulating autophagy.Activating molecule in Beclin1-regulated autophagy protein 1(AMBRA1)plays a key role in initiating Beclin1-regulated autophagy.In the present study,we discovered ALC pretreatment(1 mM,24 h)significantly increased the activity of ADSCs exposed to H_(2)O_(2)(100μM,2 h)in vitro with improved stemness,and reduced the production of intracellular ROS.In addition,we found for the first time that ALC treatment up-regulated autophagy of ADSCs through strengthening the expressions of Beclin1 and AMBRA1 synchronously,which might be involved in the protective effect of ALC.