This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geother...This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geothermal energy management.With advancing exploitation of geothermal resources deepens,precise understanding of this mechanism becomes paramount for devising effective reinjection strategies,optimizing reservoir utilization,and bolstering the economic viability of geothermal energy development.The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions,and analyzes key factors influ-encing this evolution.It evaluates existing research methods,highlighting their strengths and limitations.The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale,alongside the need for enhanced accuracy in field test results,particularly regarding computational effi-ciency of fractured thermal reservoir models under multi-well reinjection conditions.To address these shortcomings,the study proposes conducting large-scale rock seepage and heat transfer experiments,coupled with multi-tracer techniques for field testing,aimed at optimizing fractured thermal reservoir models'computational efficiency under multi-well reinjection conditions.Additionally,it suggests integrat-ing deep learning methods into research endeavors.These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.展开更多
The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper...The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.展开更多
基金funded by the National Nature Science Foundation of China(No.42272350)Scientific research project of Hunan Institute of Geology(No.HNGSTP202211)+2 种基金Hunan Province key research and development project(No.2022SK2070)Geological survey project of Department of Natural Resources of Shanxi Province(No.Jinfencai[2021-0009]G009-C05)the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources(No.SX202202).
文摘This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions,which is crucial for the sustainable geothermal energy management.With advancing exploitation of geothermal resources deepens,precise understanding of this mechanism becomes paramount for devising effective reinjection strategies,optimizing reservoir utilization,and bolstering the economic viability of geothermal energy development.The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions,and analyzes key factors influ-encing this evolution.It evaluates existing research methods,highlighting their strengths and limitations.The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale,alongside the need for enhanced accuracy in field test results,particularly regarding computational effi-ciency of fractured thermal reservoir models under multi-well reinjection conditions.To address these shortcomings,the study proposes conducting large-scale rock seepage and heat transfer experiments,coupled with multi-tracer techniques for field testing,aimed at optimizing fractured thermal reservoir models'computational efficiency under multi-well reinjection conditions.Additionally,it suggests integrat-ing deep learning methods into research endeavors.These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.
文摘The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.