The stress hardening characteristics of the reinforced rock mass in uniaxial compression tests were revealed by means of the experimental study on mechanical characteristics of cracked rock mass reinforced by bolting ...The stress hardening characteristics of the reinforced rock mass in uniaxial compression tests were revealed by means of the experimental study on mechanical characteristics of cracked rock mass reinforced by bolting and grouting. And the load-beating mechanism of the reinforced rock mass was perfectly reflected by the experiment. The results can offer some useful advice for support design and stability analysis of deep drifts in unstable strata.展开更多
Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blast...Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses.展开更多
基金Projects50490273 and 50474063 supported by National Natural Science Foundation of China
文摘The stress hardening characteristics of the reinforced rock mass in uniaxial compression tests were revealed by means of the experimental study on mechanical characteristics of cracked rock mass reinforced by bolting and grouting. And the load-beating mechanism of the reinforced rock mass was perfectly reflected by the experiment. The results can offer some useful advice for support design and stability analysis of deep drifts in unstable strata.
文摘Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses.