The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismi...The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.展开更多
Site measurements have shown that slab loads re-distribute, between the slabs during the concrete curing, while the external Ioadings and structural geometry remain the same. Some have assumed that this is caused by c...Site measurements have shown that slab loads re-distribute, between the slabs during the concrete curing, while the external Ioadings and structural geometry remain the same. Some have assumed that this is caused by concrete shrinkage and creep, but there have been no studies on how these factors exactly influence the load distributions and to what degree these influences exist. This paper analyzes the influences of concrete shrinkage, creep, and temperature on the load re-distributions among slabs. Although these factors may all lead to load re-distribution, the results show that the influence of concrete shrinkage can be neglected. Simulations indicate that shrinkage only reduces slab loads by a maximum of 1.1%. Creep, however, may reduce the maximum slab load by from 3% to 16% for common construction schemes. More importantly, temperature variations between day and night can cause load fluctuation as large as 31.6%. This analysis can, therefore, assist site engineers to more accurately estimate slab loads for construction planning.展开更多
In order to study the calculation methods of shear behavior of reinforced concrete beams of Chinese modern reinforced concrete buildings,this paper carried out tests on the concrete compressive strength of 12 Chinese ...In order to study the calculation methods of shear behavior of reinforced concrete beams of Chinese modern reinforced concrete buildings,this paper carried out tests on the concrete compressive strength of 12 Chinese modern concrete buildings,the mechanical properties of 66 rebars from different Chinese modern concrete buildings,and the concrete cover thickness of 9 Chinese modern concrete buildings,and the actual material properties and structural configurations have been obtained. Then,the comparison on calculation methods include the Chinese original calculation method,the Chinese present calculation method,the American present calculation method and the European present calculation method is studied with case analysis method.The results show that the Chinese original calculation method of shear behavior of reinforced concrete beams is based on the allowable stress calculation method,and the design safety factors are 3. 55- 4. 00. The standard value of the compressive strength of concrete cubes is 8. 48 MPa,the standard value of the concrete tensile strength is 1.20 MPa,the standard value of the yield strength of rectangular rebars is 229. 56 MPa,and the standard value of the yield strength of round rebars is 276. 82 MPa. The average value of the concrete cover thickness of beams and columns is 35.96 mm. In term of calculation area of hoop rebars of reinforced concrete beams,without considering earthquake loads,the Chinese original structural calculation method is safer than the Chinese present structural calculation method,but is more unsafe than the American present structural calculation method and the European present structural calculation method. The results can provide the support for structural safety assessments and repair designs of Chinese modern reinforced concrete buildings.展开更多
High-rise reinforced concrete buildings are in great demand in developing countries with rapid urbanization. Construction engineers are facing more and more safety control challenges. One major issue is the understand...High-rise reinforced concrete buildings are in great demand in developing countries with rapid urbanization. Construction engineers are facing more and more safety control challenges. One major issue is the understanding of the load distributions, especially the maximum slab load, of structures under construction, which is time dependent. Previous methods were mainly targeted to specific examples, providing specific solutions without addressing the fundamental issues of finding general solutions for load distributions in reinforced concrete buildings with different geometrical and material characteristics during construction. The concept of a structural characteristic parameter is used here to parametedze the main geometrical and material characteristics of concrete structures for generalized assessments of load distributions during construction. The maximum slab load for 20 different construction shoring/reshoring schemes is presented. The results indicate that the traditional simplified method may underestimate or overestimate the maximum slab load, depending mainly on the shoring/reshoring schemes. The structural characteristic parameter approach was specifically developed to assist construction engineers to estimate load distributions to assure safe construction procedures.展开更多
Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design rev...Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design review of a seven-story reinforced concrete building to understand the effect of shear wall location on the response of reinforced concrete structures when subjected to different earthquake forces. Three trail locations of shear walls are selected and their performance is monitored in terms of structural response under different lateral loads. Required objectives are achieved by obtaining design and construction drawings of an existing reinforced concrete structure and modeling it on Finite Element Method (FEM) based computer software. The structure is redesigned and discussed with four different configurations (one without shear wall and three with shear walls). Main framing components (Beams, Columns and Shear walls) of the superstructure are designed using SAP 2000 V. 19.0 whereas substructure (foundation) of RC building was?designed using SAFE. American Concrete Institute (ACI) design specifications were used to calculate the cracked section stiffness or non-linear geometrical properties of the cracked section. Uniform Building Code (UBC-97) procedures were adopted to calculate the lateral earthquake loading on the structures. Structural response of the building was monitored at each story level for each earthquake force zone described by the UBC-97. The earthquake lateral forces were considered in both X and Y direction of the building. Each configuration of shear wall is carefully analyzed and effect of its location is calibrated by the displacement response of the structure. Eccentricity to the lateral stiffness of the building is imparted by changing the location of shear walls. Results of the study have shown that the location of shear wall significantly affects the lateral response of the structure under earthquake forces. It also motivates to carefully decide the center of lateral stiffness o展开更多
The safety analysis of reinforced concrete buildings during construction should be based on the comprehensive understanding of loads, load effects, structural resistance, and available safety index of the structure. T...The safety analysis of reinforced concrete buildings during construction should be based on the comprehensive understanding of loads, load effects, structural resistance, and available safety index of the structure. This paper analyzes the characteristics and probabilistic models of resistance, loads, and load effects. A method was developed to calculate the probability of failure based on Monte Carlo simulation and models proposed in previous articles. Construction examples were used to analyze the influence of live load on the probability of failure. The results show that when the live load increases, the maximum probability of failure increases with acceleration. The results suggest that the construction live load should be carefully addressed during construction.展开更多
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ...In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.展开更多
基金partially funded by Italian Department of Civil Protection in the frame of the National ReLUIS Project 2005-2008 line 2-Theme 2
文摘The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.
基金Supported by the National Nature Science Foundation of China (Nos.50378051,70172005,and 70572007)Excellent Young Teacher Program of Ministry of Education of Chinathe National Science and Technology Planning Project (No.2006BAJ01B04-03)
文摘Site measurements have shown that slab loads re-distribute, between the slabs during the concrete curing, while the external Ioadings and structural geometry remain the same. Some have assumed that this is caused by concrete shrinkage and creep, but there have been no studies on how these factors exactly influence the load distributions and to what degree these influences exist. This paper analyzes the influences of concrete shrinkage, creep, and temperature on the load re-distributions among slabs. Although these factors may all lead to load re-distribution, the results show that the influence of concrete shrinkage can be neglected. Simulations indicate that shrinkage only reduces slab loads by a maximum of 1.1%. Creep, however, may reduce the maximum slab load by from 3% to 16% for common construction schemes. More importantly, temperature variations between day and night can cause load fluctuation as large as 31.6%. This analysis can, therefore, assist site engineers to more accurately estimate slab loads for construction planning.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51138002)a Foundation for the Author of National Excellent Doctoral Dissertation of PR China(Grant No.201452)
文摘In order to study the calculation methods of shear behavior of reinforced concrete beams of Chinese modern reinforced concrete buildings,this paper carried out tests on the concrete compressive strength of 12 Chinese modern concrete buildings,the mechanical properties of 66 rebars from different Chinese modern concrete buildings,and the concrete cover thickness of 9 Chinese modern concrete buildings,and the actual material properties and structural configurations have been obtained. Then,the comparison on calculation methods include the Chinese original calculation method,the Chinese present calculation method,the American present calculation method and the European present calculation method is studied with case analysis method.The results show that the Chinese original calculation method of shear behavior of reinforced concrete beams is based on the allowable stress calculation method,and the design safety factors are 3. 55- 4. 00. The standard value of the compressive strength of concrete cubes is 8. 48 MPa,the standard value of the concrete tensile strength is 1.20 MPa,the standard value of the yield strength of rectangular rebars is 229. 56 MPa,and the standard value of the yield strength of round rebars is 276. 82 MPa. The average value of the concrete cover thickness of beams and columns is 35.96 mm. In term of calculation area of hoop rebars of reinforced concrete beams,without considering earthquake loads,the Chinese original structural calculation method is safer than the Chinese present structural calculation method,but is more unsafe than the American present structural calculation method and the European present structural calculation method. The results can provide the support for structural safety assessments and repair designs of Chinese modern reinforced concrete buildings.
基金Supported by the National Natural Science Foundation of China (Nos.50378051,70172005,and 70572007)the National Science and Technology Planning Project (No.2006BAJ01B04-03)
文摘High-rise reinforced concrete buildings are in great demand in developing countries with rapid urbanization. Construction engineers are facing more and more safety control challenges. One major issue is the understanding of the load distributions, especially the maximum slab load, of structures under construction, which is time dependent. Previous methods were mainly targeted to specific examples, providing specific solutions without addressing the fundamental issues of finding general solutions for load distributions in reinforced concrete buildings with different geometrical and material characteristics during construction. The concept of a structural characteristic parameter is used here to parametedze the main geometrical and material characteristics of concrete structures for generalized assessments of load distributions during construction. The maximum slab load for 20 different construction shoring/reshoring schemes is presented. The results indicate that the traditional simplified method may underestimate or overestimate the maximum slab load, depending mainly on the shoring/reshoring schemes. The structural characteristic parameter approach was specifically developed to assist construction engineers to estimate load distributions to assure safe construction procedures.
文摘Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design review of a seven-story reinforced concrete building to understand the effect of shear wall location on the response of reinforced concrete structures when subjected to different earthquake forces. Three trail locations of shear walls are selected and their performance is monitored in terms of structural response under different lateral loads. Required objectives are achieved by obtaining design and construction drawings of an existing reinforced concrete structure and modeling it on Finite Element Method (FEM) based computer software. The structure is redesigned and discussed with four different configurations (one without shear wall and three with shear walls). Main framing components (Beams, Columns and Shear walls) of the superstructure are designed using SAP 2000 V. 19.0 whereas substructure (foundation) of RC building was?designed using SAFE. American Concrete Institute (ACI) design specifications were used to calculate the cracked section stiffness or non-linear geometrical properties of the cracked section. Uniform Building Code (UBC-97) procedures were adopted to calculate the lateral earthquake loading on the structures. Structural response of the building was monitored at each story level for each earthquake force zone described by the UBC-97. The earthquake lateral forces were considered in both X and Y direction of the building. Each configuration of shear wall is carefully analyzed and effect of its location is calibrated by the displacement response of the structure. Eccentricity to the lateral stiffness of the building is imparted by changing the location of shear walls. Results of the study have shown that the location of shear wall significantly affects the lateral response of the structure under earthquake forces. It also motivates to carefully decide the center of lateral stiffness o
文摘The safety analysis of reinforced concrete buildings during construction should be based on the comprehensive understanding of loads, load effects, structural resistance, and available safety index of the structure. This paper analyzes the characteristics and probabilistic models of resistance, loads, and load effects. A method was developed to calculate the probability of failure based on Monte Carlo simulation and models proposed in previous articles. Construction examples were used to analyze the influence of live load on the probability of failure. The results show that when the live load increases, the maximum probability of failure increases with acceleration. The results suggest that the construction live load should be carefully addressed during construction.
文摘In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.
文摘为准确评估使用方形钢筋的民国钢筋混凝土历史建筑的耐久性,对其锈胀开裂寿命的预测方法进行研究.首先,对9个民国钢筋混凝土历史建筑的混凝土构件进行现场检测分析,获得混凝土的抗压强度、混凝土保护层厚度、混凝土的碳化深度等数据,并据此对原有的碳化系数计算公式进行修正.然后,对民国方形钢筋进行电化学加速锈蚀试验,测量其临界锈蚀深度.结果表明:计算民国时期钢筋混凝土的碳化系数时,需引入修正系数1.16;针对圆形钢筋的临界锈蚀深度计算方法不适用于方形钢筋.民国钢筋混凝土历史建筑的锈胀开裂寿命基本为55~80 a.