The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met...The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy 展开更多
In many chiller plants,high coefficient of performance(COP)is only achieved at a few favorable part load ratios(PLRs),while the COP is low at many other non-favorable PLRs.To address this issue,this study proposes a g...In many chiller plants,high coefficient of performance(COP)is only achieved at a few favorable part load ratios(PLRs),while the COP is low at many other non-favorable PLRs.To address this issue,this study proposes a generic load regulation strategy that aims to maintain chiller plants operating at high COP,particularly under non-favorable PLRs.This is achieved by incorporating thermal energy storage(TES)units and timely optimizing the charging and discharging power of the integrated TES units.The optimal charging and discharging power is determined by solving a dynamic optimization problem,taking into account the performance constraints of the TES units and the chiller plants.To provide an overview of the energy-saving potential of the proposed strategy,a comprehensive analysis was conducted,considering factors such as building load profiles,COP/PLR curves of chillers,and attributes of the TES units.The analysis revealed that the proposed load regulation strategy has the potential to achieve energy savings ranging from 5.7%to 10.8%for chiller plants with poor COPs under unfavorable PLRs,particularly in buildings with significant load variations.展开更多
基金Funded by National Natural Science Foundation of China(No.51308275)Natural Science Foundation of Liaoning Province(No.SY2016004)Science Foundation for Young Scientists of Liaoning Educational Committee(No.JQL201915403).
文摘The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy
基金the funding support by a CRF from UGC Hong Kong(C5018-20G)a MFPRC from City University of Hong Kong(9680328)a Guangzhou International Science and Technology Cooperation project(2021A0505030077).
文摘In many chiller plants,high coefficient of performance(COP)is only achieved at a few favorable part load ratios(PLRs),while the COP is low at many other non-favorable PLRs.To address this issue,this study proposes a generic load regulation strategy that aims to maintain chiller plants operating at high COP,particularly under non-favorable PLRs.This is achieved by incorporating thermal energy storage(TES)units and timely optimizing the charging and discharging power of the integrated TES units.The optimal charging and discharging power is determined by solving a dynamic optimization problem,taking into account the performance constraints of the TES units and the chiller plants.To provide an overview of the energy-saving potential of the proposed strategy,a comprehensive analysis was conducted,considering factors such as building load profiles,COP/PLR curves of chillers,and attributes of the TES units.The analysis revealed that the proposed load regulation strategy has the potential to achieve energy savings ranging from 5.7%to 10.8%for chiller plants with poor COPs under unfavorable PLRs,particularly in buildings with significant load variations.