This paper introduces a new method of converting interlaced video to a progressively scanned video and image, The new method is derived from Bayesian framework with the spatial-temporal smoothness constraint and the M...This paper introduces a new method of converting interlaced video to a progressively scanned video and image, The new method is derived from Bayesian framework with the spatial-temporal smoothness constraint and the MAP is done by minimizing the energy functional, The half-quadratic regularization method is used to solve the corresponding partial differential equations (PDEs), This approach gives the improved results over the conventional de-interlacing methods, Two criteria are proposed in the paper, and they can be used to evaluate the performance of the de-interlacing algorithms,展开更多
Ill-posed problems are widely existed in signat processing. In this paper, we review popular regularization models such as truncated singular value decomposi- tion regularization, iterative regularization, variational...Ill-posed problems are widely existed in signat processing. In this paper, we review popular regularization models such as truncated singular value decomposi- tion regularization, iterative regularization, variational regularizafion. Meanwhile, we also retrospect popular optimiza- tion approaches and regularization parameter choice meth- ods. In fact, the regularization problem is inherently a multi- objective problem. The traditional methods usually combine the fidelity term and the regularization term into a single- objective with regularization parameters, which are difficult to tune. Therefore, we propose a multi-objective framework for ill-posed problems, which can handle complex features of problem such as non-convexity, discontinuity. In this framework, the fidelity term and regularization term are optimized simultaneously to gain more insights into the ill-posed prob- lems. A case study on signal recovery shows the effectiveness of the multi-objective framework for ill-posed problems.展开更多
Image reconstruction in electrical impedance tomography(EIT) is a highly ill posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method bas...Image reconstruction in electrical impedance tomography(EIT) is a highly ill posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method based on the spatial filtering theory is proposed. The new regularized reconstruction for EIT is independent of the estimation of impedance distribution, so it can be implemented more easily than the maximum a posteriori(MAP) method. The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution. We implemented our regularization method with two dimensional computer simulations. The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.展开更多
Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has ap...Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has applications in image processing, text mining, recommendation systems and a variety of other fields. Since its inception, the NMF algorithm has been modified and explored by numerous authors. One such modification involves the addition of auxiliary constraints to the objective function of the factorization. The purpose of these auxiliary constraints is to impose task-specific penalties or restrictions on the objective function. Though many auxiliary constraints have been studied, none have made use of data-dependent penalties. In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints. We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.展开更多
文摘This paper introduces a new method of converting interlaced video to a progressively scanned video and image, The new method is derived from Bayesian framework with the spatial-temporal smoothness constraint and the MAP is done by minimizing the energy functional, The half-quadratic regularization method is used to solve the corresponding partial differential equations (PDEs), This approach gives the improved results over the conventional de-interlacing methods, Two criteria are proposed in the paper, and they can be used to evaluate the performance of the de-interlacing algorithms,
文摘Ill-posed problems are widely existed in signat processing. In this paper, we review popular regularization models such as truncated singular value decomposi- tion regularization, iterative regularization, variational regularizafion. Meanwhile, we also retrospect popular optimiza- tion approaches and regularization parameter choice meth- ods. In fact, the regularization problem is inherently a multi- objective problem. The traditional methods usually combine the fidelity term and the regularization term into a single- objective with regularization parameters, which are difficult to tune. Therefore, we propose a multi-objective framework for ill-posed problems, which can handle complex features of problem such as non-convexity, discontinuity. In this framework, the fidelity term and regularization term are optimized simultaneously to gain more insights into the ill-posed prob- lems. A case study on signal recovery shows the effectiveness of the multi-objective framework for ill-posed problems.
文摘Image reconstruction in electrical impedance tomography(EIT) is a highly ill posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method based on the spatial filtering theory is proposed. The new regularized reconstruction for EIT is independent of the estimation of impedance distribution, so it can be implemented more easily than the maximum a posteriori(MAP) method. The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution. We implemented our regularization method with two dimensional computer simulations. The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.
文摘Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has applications in image processing, text mining, recommendation systems and a variety of other fields. Since its inception, the NMF algorithm has been modified and explored by numerous authors. One such modification involves the addition of auxiliary constraints to the objective function of the factorization. The purpose of these auxiliary constraints is to impose task-specific penalties or restrictions on the objective function. Though many auxiliary constraints have been studied, none have made use of data-dependent penalties. In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints. We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.