In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new...In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new results about VNL-rings and GVNL-ringsare also given.展开更多
We study the structure of rings which satisfy the von Neumann regularity of commutators,and call a ring R C-regularif ab-ba ∈(ab-ba)R(ab-ba)for all a,b in R.For a C-regular ring R,we prove J(R[X])=N^(*)(R[X])=N^(*)(R...We study the structure of rings which satisfy the von Neumann regularity of commutators,and call a ring R C-regularif ab-ba ∈(ab-ba)R(ab-ba)for all a,b in R.For a C-regular ring R,we prove J(R[X])=N^(*)(R[X])=N^(*)(R)[X]=W(R)[X]■Z(R[X]),where J(A),N^(*)(A),W(A),Z(A)are the Jacobson radical,upper nilradical,Wedderburn radical,and center of a given ring A,respectively,and A[X]denotes the polynomial ring with a set X of commuting indeterminates over A;we also prove that R is semiprime if and only if the right(left)singular ideal of R is zero.We provide methods to construct C-regular rings which are neither commutative nor von Neumann regular,from any given ring.Moreover,for a C-regular ring R,the following are proved to be equivalent:(i)R is Abelian;(ii)every prime factor ring of R is a duo domain;(ii)R is quasi-duo;and(iv)R/W(R)is reduced.展开更多
The upgrade of all kinds of algebraic structures has been emphasized with the development of fuzzy mathematics.The concept of hypergroup was raised first by Prof.LI Hong_xing in [1]and HX ring was done in [2].In thi...The upgrade of all kinds of algebraic structures has been emphasized with the development of fuzzy mathematics.The concept of hypergroup was raised first by Prof.LI Hong_xing in [1]and HX ring was done in [2].In this paper ,some properties of power ring and quasi_quotient ring are further studied based on paper [3~6].Especially,several theorems of homomorphism and isomorphism of regular power ring are established.展开更多
The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements.Such rings shall be called ri...The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements.Such rings shall be called right exp-DR.We investigate the structures of group rings,right quotient rings,matrix rings and(skew)polynomial rings,through the study of right exp-DR rings.In addition,we provide a method of constructing finite non-abelian p-groups for any prime p.展开更多
Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various stru...Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.展开更多
A ring R is called a GVNL-ring if a or 1-a is π-regular for every a∈R,as a common generalization of local and π-regular rings.It is proved that if R is a GVNL ring,then either(1-e)R(1-e) or eRe is a π-regular ring...A ring R is called a GVNL-ring if a or 1-a is π-regular for every a∈R,as a common generalization of local and π-regular rings.It is proved that if R is a GVNL ring,then either(1-e)R(1-e) or eRe is a π-regular ring for every idempotent e of R.We prove that the center of a GVNL ring is also GVNL and every abelian GVNL ring is SGVNL.The formal power series ring R[x] is GVNL if and only if R is a local ring.展开更多
文摘In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new results about VNL-rings and GVNL-ringsare also given.
文摘We study the structure of rings which satisfy the von Neumann regularity of commutators,and call a ring R C-regularif ab-ba ∈(ab-ba)R(ab-ba)for all a,b in R.For a C-regular ring R,we prove J(R[X])=N^(*)(R[X])=N^(*)(R)[X]=W(R)[X]■Z(R[X]),where J(A),N^(*)(A),W(A),Z(A)are the Jacobson radical,upper nilradical,Wedderburn radical,and center of a given ring A,respectively,and A[X]denotes the polynomial ring with a set X of commuting indeterminates over A;we also prove that R is semiprime if and only if the right(left)singular ideal of R is zero.We provide methods to construct C-regular rings which are neither commutative nor von Neumann regular,from any given ring.Moreover,for a C-regular ring R,the following are proved to be equivalent:(i)R is Abelian;(ii)every prime factor ring of R is a duo domain;(ii)R is quasi-duo;and(iv)R/W(R)is reduced.
文摘The upgrade of all kinds of algebraic structures has been emphasized with the development of fuzzy mathematics.The concept of hypergroup was raised first by Prof.LI Hong_xing in [1]and HX ring was done in [2].In this paper ,some properties of power ring and quasi_quotient ring are further studied based on paper [3~6].Especially,several theorems of homomorphism and isomorphism of regular power ring are established.
文摘The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements.Such rings shall be called right exp-DR.We investigate the structures of group rings,right quotient rings,matrix rings and(skew)polynomial rings,through the study of right exp-DR rings.In addition,we provide a method of constructing finite non-abelian p-groups for any prime p.
基金Guo Yuqi was supported by the National Natural Science Foundation of China (Grant No. 10071068) the Provincial Applied Fundamental Research Foundation of Yunnan Province of China.
文摘Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.
基金supported by the grant of National Natural Science Foundation of China(10971024)the Nanjing University of Posts and Telecommunications(NY209022)
文摘A ring R is called a GVNL-ring if a or 1-a is π-regular for every a∈R,as a common generalization of local and π-regular rings.It is proved that if R is a GVNL ring,then either(1-e)R(1-e) or eRe is a π-regular ring for every idempotent e of R.We prove that the center of a GVNL ring is also GVNL and every abelian GVNL ring is SGVNL.The formal power series ring R[x] is GVNL if and only if R is a local ring.