Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmosph...Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmospheric effects and methods for correcting them are still imperfect and disputed. This research supposed and practiced an indirect, fast, and operational method to conduct atmospheric correction of images for getting comparable vegetation index values in different times. It tries to find a variable free from atmospheric effects, e.g., the mean vegetation coverage value of the whole study area, as a basis to reduce atmospheric correction parameters by establishing mathematical models and conducting simulation calculations. Using these parameters, the images can be atmospherically corrected. And then, the vegetation index and corresponding vegetation coverage values for all pixels, the vegetation coverage maps and coverage grade maps for different years were calculated, i.e., the plant cover monitoring was realized. Using the vegetation coverage grade maps and the ground slope grade map from a DEM to generate soil erosion grade maps for different years, the soil erosion monitoring was also realized. The results show that in the study area the vegetation coverage was the lowest in 1976, much better in 1989, but a bit worse again in 2001. Towards the soil erosion, it had been mitigated continuously from 1976 to 1989 and then to 2001. It is interesting that a little decrease of vegetation coverage from 1989 to 2001 did not lead to increase of soil erosion. The reason is that the decrease of vegetation coverage was chiefly caused by urbanization and thus mainly occurred in very gentle terrains, where soil erosion was naturally slight. The results clearly indicate the details of plant cover and soil erosion change in 25 years and also offer a scientific foundation for plant and soil conservation.展开更多
The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ bu...The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ buoys and Jason-1/2 altimeters, and is corrected using a linear regression with in-situ measurements. Com- pared with NDBC SWH, the HY-2 SWH show a RMS of 0.36 m, which is similar to Jason- 1 and Jason-2 SWH with the RMS of 0.35 m and 0.37 m respectively; the RMS of corrected HY-2 SWH is 0.27 m, similar to 0.27 m and 0.23 m of corrected Jason-1 and Jason-2 SWH. Therefore the accuracy of HY-2 SWH products is close to that of Jason-1/2 SWH, and the linear regression function derived can improve the accuracy of HY-2 SWH products.展开更多
文摘Dynamic monitoring of plant cover and soil erosion often uses remote sensing data, especially for estimating the plant cover rate (vegetation coverage) by vegetation index. However, the latter is influenced by atmospheric effects and methods for correcting them are still imperfect and disputed. This research supposed and practiced an indirect, fast, and operational method to conduct atmospheric correction of images for getting comparable vegetation index values in different times. It tries to find a variable free from atmospheric effects, e.g., the mean vegetation coverage value of the whole study area, as a basis to reduce atmospheric correction parameters by establishing mathematical models and conducting simulation calculations. Using these parameters, the images can be atmospherically corrected. And then, the vegetation index and corresponding vegetation coverage values for all pixels, the vegetation coverage maps and coverage grade maps for different years were calculated, i.e., the plant cover monitoring was realized. Using the vegetation coverage grade maps and the ground slope grade map from a DEM to generate soil erosion grade maps for different years, the soil erosion monitoring was also realized. The results show that in the study area the vegetation coverage was the lowest in 1976, much better in 1989, but a bit worse again in 2001. Towards the soil erosion, it had been mitigated continuously from 1976 to 1989 and then to 2001. It is interesting that a little decrease of vegetation coverage from 1989 to 2001 did not lead to increase of soil erosion. The reason is that the decrease of vegetation coverage was chiefly caused by urbanization and thus mainly occurred in very gentle terrains, where soil erosion was naturally slight. The results clearly indicate the details of plant cover and soil erosion change in 25 years and also offer a scientific foundation for plant and soil conservation.
基金The Marine Public Welfare Project of China under contract No.201105032the National High-Tech Project of China undercontract No.2008AA09A403the fund of State Administration for Science,Technology and Industry for National Defense
文摘The HY-2 satellite was successfully launched on 16 August 2011. The HY-2 significant wave height (SWH) is validated by the data from the South China Sea (SCS) field experiment, National Data Buoy Center (NDBC/ buoys and Jason-1/2 altimeters, and is corrected using a linear regression with in-situ measurements. Com- pared with NDBC SWH, the HY-2 SWH show a RMS of 0.36 m, which is similar to Jason- 1 and Jason-2 SWH with the RMS of 0.35 m and 0.37 m respectively; the RMS of corrected HY-2 SWH is 0.27 m, similar to 0.27 m and 0.23 m of corrected Jason-1 and Jason-2 SWH. Therefore the accuracy of HY-2 SWH products is close to that of Jason-1/2 SWH, and the linear regression function derived can improve the accuracy of HY-2 SWH products.