How to comprehensively consider the power flow constraints and various stability constraints in a series of power system optimization problems without affecting the calculation speed is always a problem.The computatio...How to comprehensively consider the power flow constraints and various stability constraints in a series of power system optimization problems without affecting the calculation speed is always a problem.The computational burden of probabilistic security assessment is even more unimaginable.In order to solve such problems,a security region(SR)methodology is proposed,which is a brand-new methodology developed on the basis of the classical point-wise method.Tianjin University has been studying the SR methodology since the 1980s,and has achieved a series of original breakthroughs that are described in this paper.The integrated SR introduced in this paper is mainly defined in the power injection space,and includes SRs to ensure steady-state security,transient stability,static voltage stability,and smalldisturbance stability.These SRs are uniquely determined for a given network topology(as well as location and clearing process for transient faults)and given system component parameters,and are irrelevant to operation states.This paper presents 11 facts and related remarks to introduce the basic concepts,composition,dynamics nature,and topological and geometric characteristics of SRs.It also provides a practical mathematical description of SR boundaries and fast calculation methods to determine them in a concise and systematic way.Thus,this article provides support for the systematic understanding,future research,and applications of SRs.The most critical finding on the topological and geometric characteristics of SRs is that,within the scope of engineering concern,the practical boundaries of SRs in the power injection space can be approximated by one or a few hyperplanes.Based on this finding,the calculation time for power system probabilistic security assessment(i.e.,risk analysis)and power system optimization with security constraints can be decreased by orders of magnitude.展开更多
This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity c...This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity cost.The static voltage stability region in the cut set power space(CVSR) and the practical dynamic security region(PDSR) in the injection power space are used to represent the constraints of voltage stability and transient stability,so that the consideration of this kind of constraints in the optimization becomes very easy.In the proposed algorithm,a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested.According to the K-T optimality conditions,the prices of active power and reactive power,and the different components corresponding to the concerned security constraints are derived.The components of spot prices can reflect the influence of different node power injections on each kind of security constraints,so that through the node price all of the participants in power market can be stimulated to take an active part in maintaining the system security.An illustrative example on the New England 10-genetator 39-bus System is used to demonstrate the proposed method.展开更多
A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin ...A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin to contingency ranking and screening are discussed. Simulations in the 10-machine 39-bus New England system are performed to show the effectiveness of the proposed DSR based tran-sient stability margin.展开更多
文摘How to comprehensively consider the power flow constraints and various stability constraints in a series of power system optimization problems without affecting the calculation speed is always a problem.The computational burden of probabilistic security assessment is even more unimaginable.In order to solve such problems,a security region(SR)methodology is proposed,which is a brand-new methodology developed on the basis of the classical point-wise method.Tianjin University has been studying the SR methodology since the 1980s,and has achieved a series of original breakthroughs that are described in this paper.The integrated SR introduced in this paper is mainly defined in the power injection space,and includes SRs to ensure steady-state security,transient stability,static voltage stability,and smalldisturbance stability.These SRs are uniquely determined for a given network topology(as well as location and clearing process for transient faults)and given system component parameters,and are irrelevant to operation states.This paper presents 11 facts and related remarks to introduce the basic concepts,composition,dynamics nature,and topological and geometric characteristics of SRs.It also provides a practical mathematical description of SR boundaries and fast calculation methods to determine them in a concise and systematic way.Thus,this article provides support for the systematic understanding,future research,and applications of SRs.The most critical finding on the topological and geometric characteristics of SRs is that,within the scope of engineering concern,the practical boundaries of SRs in the power injection space can be approximated by one or a few hyperplanes.Based on this finding,the calculation time for power system probabilistic security assessment(i.e.,risk analysis)and power system optimization with security constraints can be decreased by orders of magnitude.
基金the key research project of the National Natural Science Foundation of China(Grant No.50595413)
文摘This paper develops a novel model and an algorithm of security region based real and reactive power pricing of power systems.In the proposed model,the reactive power production cost is represented as the opportunity cost.The static voltage stability region in the cut set power space(CVSR) and the practical dynamic security region(PDSR) in the injection power space are used to represent the constraints of voltage stability and transient stability,so that the consideration of this kind of constraints in the optimization becomes very easy.In the proposed algorithm,a decoupled optimization and iteration method of active power production cost and reactive power production cost is suggested.According to the K-T optimality conditions,the prices of active power and reactive power,and the different components corresponding to the concerned security constraints are derived.The components of spot prices can reflect the influence of different node power injections on each kind of security constraints,so that through the node price all of the participants in power market can be stimulated to take an active part in maintaining the system security.An illustrative example on the New England 10-genetator 39-bus System is used to demonstrate the proposed method.
基金Supported by Chinese National Basic Research Program (Grant No. 2004CB217900)the National Natural Science Foundation of China (Grant Nos. 50525721, 50595411, 50707035) China Postdoctoral Science Foundation (Grant No. 20060400518)
文摘A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin to contingency ranking and screening are discussed. Simulations in the 10-machine 39-bus New England system are performed to show the effectiveness of the proposed DSR based tran-sient stability margin.