Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodyn...Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodynamic heating, and on the other hand, combustion chamber inter walls are under extremely high temperature and heat flux. Therefore, more efficient and stable active cooling technologies are required in hypersonic vehicles, such as regenerative cooling, film cooling, and transpiration cooling, as well as their combinations. This paper presents a comprehensive literature review on three active cooling methods, i.e., regenerative cooling, film cooling, and transpiration cooling, and deeply analyzes the mechanism of each cooling method, including the fluids flow, heat transfer, and thermal cracking characteristics of different hydrocarbon fuels in regenerative cooling,the heat transfer and flow mechanism of film cooling under supersonic mainstream conditions, and the heat transfer and flow mechanism of transpiration cooling.展开更多
The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of...The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of hypersonic vehicles.Triply periodic minimal surface(TPMS)is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics.In this study,test pieces were manufactured using Ti6Al4V lightweight material.We designed three types of porous test pieces,and the interior was filled with a TPMS lattice(Gyroid,Primitive,I-WP)with a porosity of 30%.All porous test pieces were manufactured via selective laser melting technology.A combination of experiments and finite element simulations were performed to study the selection of the internal cavity structure of the regenerative cooling thermal protection system.Hence,the relationship between the geometry and mechanical properties of a unit cell is established,and the deformation mechanism of the porous unit cell is clarified.Among the three types of porous test pieces,the weight of the test piece filled with the Gyroid unit cell was reduced by 8.21%,the average tensile strength was reduced by 17.7%compared to the solid test piece,while the average tensile strength of the Primitive and I-WP porous test pieces were decreased by 30.5%and 33.3%,respectively.Compared with the other two types of unit cells,Gyroid exhibited better mechanical conductivity characteristics.Its deformation process was characterised by stretching,shearing,and twisting,while the Primitive and I-WP unit cells underwent tensile deformation and tensile and shear deformation,respectively.The finite element predictions in the study agree well with the experimental results.The results can provide a basis for the design of regenerative cooling thermal protection system.展开更多
基金co-supported by the National Natural Science Foundation of China (No. 51536004)the Science Fund for Creative Research Groups of NSFC (No. 51621062)
文摘Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodynamic heating, and on the other hand, combustion chamber inter walls are under extremely high temperature and heat flux. Therefore, more efficient and stable active cooling technologies are required in hypersonic vehicles, such as regenerative cooling, film cooling, and transpiration cooling, as well as their combinations. This paper presents a comprehensive literature review on three active cooling methods, i.e., regenerative cooling, film cooling, and transpiration cooling, and deeply analyzes the mechanism of each cooling method, including the fluids flow, heat transfer, and thermal cracking characteristics of different hydrocarbon fuels in regenerative cooling,the heat transfer and flow mechanism of film cooling under supersonic mainstream conditions, and the heat transfer and flow mechanism of transpiration cooling.
基金support from the National Natural Science Foundation of China(NSFC,Project Nos.91860136 and 51801231)the Key R&D Plan of Guangdong Province(Grant No.2018B090905001)the Key Science and Technology project of Shaanxi Province(Grant No.2018zdzx01-04-01).
文摘The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of hypersonic vehicles.Triply periodic minimal surface(TPMS)is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics.In this study,test pieces were manufactured using Ti6Al4V lightweight material.We designed three types of porous test pieces,and the interior was filled with a TPMS lattice(Gyroid,Primitive,I-WP)with a porosity of 30%.All porous test pieces were manufactured via selective laser melting technology.A combination of experiments and finite element simulations were performed to study the selection of the internal cavity structure of the regenerative cooling thermal protection system.Hence,the relationship between the geometry and mechanical properties of a unit cell is established,and the deformation mechanism of the porous unit cell is clarified.Among the three types of porous test pieces,the weight of the test piece filled with the Gyroid unit cell was reduced by 8.21%,the average tensile strength was reduced by 17.7%compared to the solid test piece,while the average tensile strength of the Primitive and I-WP porous test pieces were decreased by 30.5%and 33.3%,respectively.Compared with the other two types of unit cells,Gyroid exhibited better mechanical conductivity characteristics.Its deformation process was characterised by stretching,shearing,and twisting,while the Primitive and I-WP unit cells underwent tensile deformation and tensile and shear deformation,respectively.The finite element predictions in the study agree well with the experimental results.The results can provide a basis for the design of regenerative cooling thermal protection system.