The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and...An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data.展开更多
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.
文摘An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data.