Solar energy is considered to be one of the most promising renewable and sustainable energy sources.The efficient utilization of solar energy has become a major requirement to build a clean and efficient energy system...Solar energy is considered to be one of the most promising renewable and sustainable energy sources.The efficient utilization of solar energy has become a major requirement to build a clean and efficient energy system and achieve the goal of carbon neutrality.The utilization of solar radiation mainly adopts two key technologies:concentrating photovoltaic(PV)and concentrated solar power(CSP).Currently,the cost of CSP with heat storage is about 9c/kWh(same as commercial PV systems)and is expected to drop to 5c/kWh by 2030.From a system level,this paper focuses on analyzing,a system for preparing clean solar fuel based on solar thermal fossil energy,the current mainstream concentrated solar thermal power generation system,the complementary utilization system coupled with multiple energy sources,and the efficient and economical multigeneration system.On the basis of this literature review,the key challenges and future development prospects for the application of concentrating solar energy systems are outlined.A concentrated solar utilization system needs to further improve efficiency and reduce costs in order to expand the scale and promote the market,it has far-reaching significance to achieve the goal of efficient utilization of clean fuel and solar energy.展开更多
A reforming dynamic system based on the single-ring erbium-doped fiber laser is proposed in this paper. The reforming system has larger Lyapunov exponent and better pseudorandom characteristics according to the simula...A reforming dynamic system based on the single-ring erbium-doped fiber laser is proposed in this paper. The reforming system has larger Lyapunov exponent and better pseudorandom characteristics according to the simulation results. It is promising in the application of the image encryption and secret communication.展开更多
Methanol steam reforming manifests great potential for generating hydrogen owing to its lower reaction temper-ature(200-300°C)and higher hydrogen/carbon ratio comparing with ethanol and methane reforming.In this ...Methanol steam reforming manifests great potential for generating hydrogen owing to its lower reaction temper-ature(200-300°C)and higher hydrogen/carbon ratio comparing with ethanol and methane reforming.In this case,methanol steam reforming is applied in various renewable energy systems to assist the energy conversion and improve the system efficiency.The performance of methanol steam reforming reaction strongly depends on the catalysts and reactor structure.In this paper,the development of the copper-based,the noble metal-based and the nanomaterial catalysts were summarized by analyzing the effects of different modification methods,which indicates that cutting the cost and simplifying the manufacturing process are the future goal of catalyst modifi-cation.Moreover,the reaction mechanism of different catalyst types was discussed.For the reactor performance,conventional,miniature,micro,and membrane reactors were discussed and compared,where conventional reac-tor with high CO tolerance is more suitable for industrial application while membrane reactor with high H 2 purity and compact structure is ideal for fuel cell technology.The integration of the methanol steam reforming system into renewable power systems was reviewed as well.Methanol steam reforming technology is of great potential in exhaust heat recovery,cogeneration system and other renewable energy field,where more comprehensive researches should be performed.展开更多
基金the financial support from the National Key R&D Plan Intergovernmental International Science and Technology Innovation Cooperation Project(grant no.2019YFE0109700)the Foshan Science and Technology Innovation Team(grant no.1920001000052).
文摘Solar energy is considered to be one of the most promising renewable and sustainable energy sources.The efficient utilization of solar energy has become a major requirement to build a clean and efficient energy system and achieve the goal of carbon neutrality.The utilization of solar radiation mainly adopts two key technologies:concentrating photovoltaic(PV)and concentrated solar power(CSP).Currently,the cost of CSP with heat storage is about 9c/kWh(same as commercial PV systems)and is expected to drop to 5c/kWh by 2030.From a system level,this paper focuses on analyzing,a system for preparing clean solar fuel based on solar thermal fossil energy,the current mainstream concentrated solar thermal power generation system,the complementary utilization system coupled with multiple energy sources,and the efficient and economical multigeneration system.On the basis of this literature review,the key challenges and future development prospects for the application of concentrating solar energy systems are outlined.A concentrated solar utilization system needs to further improve efficiency and reduce costs in order to expand the scale and promote the market,it has far-reaching significance to achieve the goal of efficient utilization of clean fuel and solar energy.
文摘A reforming dynamic system based on the single-ring erbium-doped fiber laser is proposed in this paper. The reforming system has larger Lyapunov exponent and better pseudorandom characteristics according to the simulation results. It is promising in the application of the image encryption and secret communication.
基金the National Natural Science Foundation of China(Project Nos.:51876061,51821004).
文摘Methanol steam reforming manifests great potential for generating hydrogen owing to its lower reaction temper-ature(200-300°C)and higher hydrogen/carbon ratio comparing with ethanol and methane reforming.In this case,methanol steam reforming is applied in various renewable energy systems to assist the energy conversion and improve the system efficiency.The performance of methanol steam reforming reaction strongly depends on the catalysts and reactor structure.In this paper,the development of the copper-based,the noble metal-based and the nanomaterial catalysts were summarized by analyzing the effects of different modification methods,which indicates that cutting the cost and simplifying the manufacturing process are the future goal of catalyst modifi-cation.Moreover,the reaction mechanism of different catalyst types was discussed.For the reactor performance,conventional,miniature,micro,and membrane reactors were discussed and compared,where conventional reac-tor with high CO tolerance is more suitable for industrial application while membrane reactor with high H 2 purity and compact structure is ideal for fuel cell technology.The integration of the methanol steam reforming system into renewable power systems was reviewed as well.Methanol steam reforming technology is of great potential in exhaust heat recovery,cogeneration system and other renewable energy field,where more comprehensive researches should be performed.