New acquired and reprocessed three-dimensional(3D)seismic data were used to delineate the distribution and characterization of bottom simulating reflections(BSRs)in the Chaoshan Sag,in the eastern part of Dongsha Isla...New acquired and reprocessed three-dimensional(3D)seismic data were used to delineate the distribution and characterization of bottom simulating reflections(BSRs)in the Chaoshan Sag,in the eastern part of Dongsha Island,South China Sea.Three submarine canyons with different scales were interpreted from the 3D seismic data,displaying three stages of canyon development and are related with the variation of BSR.Abundant faults were identified from the coherence and ant-tracing attributions extracted from 3D seismic data,which provide the evidence for fluid migration from deeper sediments to the gas hydrate stability zone(GHSZ).The uplift of Dongsha Island created a large number of faults and leads to the increased seafloor erosion.The erosion caused the cooling of the seafloor sediments and deepening of the base of the gas hydrate stability zone,which is attributed to the presence of paleo-BSR and BSR downward shift in the study area.Hence,methane gas may be released during the BSR resetting and gas hydrate dissociation related with seafloor erosion.展开更多
基金the National Key R&D Program of China(No.2017YFC0307301-1)the National Natural Science Foundation of China(No.41676041)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104)the National High Technology Research and Development Program of China(863 Program)(No.2013AA092601)。
文摘New acquired and reprocessed three-dimensional(3D)seismic data were used to delineate the distribution and characterization of bottom simulating reflections(BSRs)in the Chaoshan Sag,in the eastern part of Dongsha Island,South China Sea.Three submarine canyons with different scales were interpreted from the 3D seismic data,displaying three stages of canyon development and are related with the variation of BSR.Abundant faults were identified from the coherence and ant-tracing attributions extracted from 3D seismic data,which provide the evidence for fluid migration from deeper sediments to the gas hydrate stability zone(GHSZ).The uplift of Dongsha Island created a large number of faults and leads to the increased seafloor erosion.The erosion caused the cooling of the seafloor sediments and deepening of the base of the gas hydrate stability zone,which is attributed to the presence of paleo-BSR and BSR downward shift in the study area.Hence,methane gas may be released during the BSR resetting and gas hydrate dissociation related with seafloor erosion.