This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the...This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.展开更多
We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infin...We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infinite dielectric media. The theoretical aspect is based on Maxwell's equations and matching the boundary conditions for the electric and magnetic fields of the incident waves at each layer interface. We calculate the reflected and transmitted powers of the multilayered structure taking into account the widths of the slabs and the frequency dependence of permittivity and permeability of the LHM. The obtained results satisfy the law of conservation of energy. We show that if the semi-infinite dielectric media have the same refractive index and the slabs have the same width, then the reflected (and transmitted) powers can be minimized (and maximized) and the powers-frequency curves show no ripple. On the other hand if the semi-infinite dielectric media have different values of refractive indices and the slabs have different widths, then under certain conditions the situation of minimum and maximum values of the mentioned powers will be reversed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10534040 and 40674059)the State Key Laboratory of Acoustics (IACAS) (Grant No. 200807)
文摘This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.
文摘We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infinite dielectric media. The theoretical aspect is based on Maxwell's equations and matching the boundary conditions for the electric and magnetic fields of the incident waves at each layer interface. We calculate the reflected and transmitted powers of the multilayered structure taking into account the widths of the slabs and the frequency dependence of permittivity and permeability of the LHM. The obtained results satisfy the law of conservation of energy. We show that if the semi-infinite dielectric media have the same refractive index and the slabs have the same width, then the reflected (and transmitted) powers can be minimized (and maximized) and the powers-frequency curves show no ripple. On the other hand if the semi-infinite dielectric media have different values of refractive indices and the slabs have different widths, then under certain conditions the situation of minimum and maximum values of the mentioned powers will be reversed.