The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individuall...The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study are listed in the final section.展开更多
用专利方法制备出各种成分的Al Ti C中间合金作为铝及铝合金的晶粒细化剂。对该系列中间合金的组织和物相分析表明 :在制备中间合金过程中 ,C与Ti反应充分 ,生成TiC和TiAl3两种第二相 ,且TiAl3析出量取决于中间合金的Ti含量和Ti/C含量...用专利方法制备出各种成分的Al Ti C中间合金作为铝及铝合金的晶粒细化剂。对该系列中间合金的组织和物相分析表明 :在制备中间合金过程中 ,C与Ti反应充分 ,生成TiC和TiAl3两种第二相 ,且TiAl3析出量取决于中间合金的Ti含量和Ti/C含量比。用于纯铝的晶粒细化试验表明 :与Al Ti B中间合金相比 ,Al Ti C中间合金的晶粒细化效率更高 ;Al Ti C中间合金只有在组织中TiC与TiAl3保持适当比例时 ,才能对纯铝产生良好的晶粒细化效果 ,不含TiAl3的Al Ti C中间合金的晶粒细化作用很微弱 ;用Al Ti C中间合金细化纯铝晶粒时 ,响应时间短 ,但衰退较快 ,且不能通过熔体搅拌法予以消除。分析和探讨了Al Ti C中间合金的晶粒细化机理 ,认为“碳化物理论”不能充分解释Al Ti C的晶粒细化机理 ,提出“Ti在TiC或TiAl3颗粒表面富集引发包晶反应”的晶粒细化机制。展开更多
Aluminum becomes the most popular nonferrous metal and is widely used in many fields such as packaging,building transportation and electrical materials due to its rich resource, light weight, good mechanical propertie...Aluminum becomes the most popular nonferrous metal and is widely used in many fields such as packaging,building transportation and electrical materials due to its rich resource, light weight, good mechanical properties, suitable corrosion resistance and excellent electrical conductivity. Grain refinement, which is obtained by changing the size of grain structure by different techniques, is a preferred method to improve simultaneously the strength and plasticity of metallic materials. Therefore, grain refining of aluminum is regarded as a key technique in aluminum processing industry.Up to now, there have been a number of techniques for aluminum grain refining. All the techniques can be classified as four categories as follows: grain refining by vibration and stirring during solidification, rapid solidification, the addition of grain refiner and severe plastic deformation. Each of them has its own merits and demerits as well as applicable conditions, and there are still some arguments in the understanding of the mechanisms of these techniques. In this article, the research progresses and challenges encountered in the present techniques and the future research issues and directions are summarized.展开更多
基金the Chinese Foundation Research ProjectionMagnesium Elektron Ltd. and the Manchester Materials Science Center of University of Manchester.
文摘The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study are listed in the final section.
文摘用专利方法制备出各种成分的Al Ti C中间合金作为铝及铝合金的晶粒细化剂。对该系列中间合金的组织和物相分析表明 :在制备中间合金过程中 ,C与Ti反应充分 ,生成TiC和TiAl3两种第二相 ,且TiAl3析出量取决于中间合金的Ti含量和Ti/C含量比。用于纯铝的晶粒细化试验表明 :与Al Ti B中间合金相比 ,Al Ti C中间合金的晶粒细化效率更高 ;Al Ti C中间合金只有在组织中TiC与TiAl3保持适当比例时 ,才能对纯铝产生良好的晶粒细化效果 ,不含TiAl3的Al Ti C中间合金的晶粒细化作用很微弱 ;用Al Ti C中间合金细化纯铝晶粒时 ,响应时间短 ,但衰退较快 ,且不能通过熔体搅拌法予以消除。分析和探讨了Al Ti C中间合金的晶粒细化机理 ,认为“碳化物理论”不能充分解释Al Ti C的晶粒细化机理 ,提出“Ti在TiC或TiAl3颗粒表面富集引发包晶反应”的晶粒细化机制。
基金supports of the National Natural Science Foundation of China under Grant Nos.51474063,51674077 and 51504065
文摘Aluminum becomes the most popular nonferrous metal and is widely used in many fields such as packaging,building transportation and electrical materials due to its rich resource, light weight, good mechanical properties, suitable corrosion resistance and excellent electrical conductivity. Grain refinement, which is obtained by changing the size of grain structure by different techniques, is a preferred method to improve simultaneously the strength and plasticity of metallic materials. Therefore, grain refining of aluminum is regarded as a key technique in aluminum processing industry.Up to now, there have been a number of techniques for aluminum grain refining. All the techniques can be classified as four categories as follows: grain refining by vibration and stirring during solidification, rapid solidification, the addition of grain refiner and severe plastic deformation. Each of them has its own merits and demerits as well as applicable conditions, and there are still some arguments in the understanding of the mechanisms of these techniques. In this article, the research progresses and challenges encountered in the present techniques and the future research issues and directions are summarized.