A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-co...A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm(SSA) cannot solve the Lagrangian dual(LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm(DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.展开更多
炼钢–精炼–连铸是钢铁产品的关键生产工序,其有效的调度对生产过程中减少热能消耗、提高生产效率具有重要意义.根据生产过程中工序加工时间可控性和主要工艺约束提出了分散搜索(scatter search,SS)算法和数学规划相结合的两阶段求解算...炼钢–精炼–连铸是钢铁产品的关键生产工序,其有效的调度对生产过程中减少热能消耗、提高生产效率具有重要意义.根据生产过程中工序加工时间可控性和主要工艺约束提出了分散搜索(scatter search,SS)算法和数学规划相结合的两阶段求解算法.第1阶段应用SS算法基于各阶段正常的加工时间,确定炼钢–精炼生产阶段各设备的加工炉次集和各炉次的加工顺序.第2阶段将SS求得的解转化为时间约束网络图,建立了以炉次等待设备时间和设备等待炉次时间及最大完成时间最小为调度目标,工序加工时间可控的混合整数规划模型,应用CPLEX求解模型确定各炉次的加工时间和开始时间.基于国内某钢铁企业炼钢–精炼–连铸生产过程的实绩生成了14个不同规模的测试案例,对钢厂生产实绩效果与本文两阶段求解算法的优化效果进行了对比,分析了不同等待时间权重对两阶段算法性能的影响,并与采用遗传局域搜索(genetic local search,GLS)算法与数学规划相结合的求解算法的优化效果进行了比较.实验结果表明本文给出的模型和两阶段求解算法对加工时间可控的炼钢–精炼–连铸调度问题的优化效果很好.展开更多
基金Projects(51435009,51575212,61573249,61371200)supported by the National Natural Science Foundation of ChinaProjects(2015T80798,2014M552040,2014M561250,2015M571328)supported by Postdoctoral Science Foundation of ChinaProject(L2015372)supported by Liaoning Province Education Administration,China
文摘A Lagrangian relaxation(LR) approach was presented which is with machine capacity relaxation and operation precedence relaxation for solving a flexible job shop(FJS) scheduling problem from the steelmaking-refining-continuous casting process. Unlike the full optimization of LR problems in traditional LR approaches, the machine capacity relaxation is optimized asymptotically, while the precedence relaxation is optimized approximately due to the NP-hard nature of its LR problem. Because the standard subgradient algorithm(SSA) cannot solve the Lagrangian dual(LD) problem within the partial optimization of LR problem, an effective deflected-conditional approximate subgradient level algorithm(DCASLA) was developed, named as Lagrangian relaxation level approach. The efficiency of the DCASLA is enhanced by a deflected-conditional epsilon-subgradient to weaken the possible zigzagging phenomena. Computational results and comparisons show that the proposed methods improve significantly the efficiency of the LR approach and the DCASLA adopting capacity relaxation strategy performs best among eight methods in terms of solution quality and running time.
文摘炼钢–精炼–连铸是钢铁产品的关键生产工序,其有效的调度对生产过程中减少热能消耗、提高生产效率具有重要意义.根据生产过程中工序加工时间可控性和主要工艺约束提出了分散搜索(scatter search,SS)算法和数学规划相结合的两阶段求解算法.第1阶段应用SS算法基于各阶段正常的加工时间,确定炼钢–精炼生产阶段各设备的加工炉次集和各炉次的加工顺序.第2阶段将SS求得的解转化为时间约束网络图,建立了以炉次等待设备时间和设备等待炉次时间及最大完成时间最小为调度目标,工序加工时间可控的混合整数规划模型,应用CPLEX求解模型确定各炉次的加工时间和开始时间.基于国内某钢铁企业炼钢–精炼–连铸生产过程的实绩生成了14个不同规模的测试案例,对钢厂生产实绩效果与本文两阶段求解算法的优化效果进行了对比,分析了不同等待时间权重对两阶段算法性能的影响,并与采用遗传局域搜索(genetic local search,GLS)算法与数学规划相结合的求解算法的优化效果进行了比较.实验结果表明本文给出的模型和两阶段求解算法对加工时间可控的炼钢–精炼–连铸调度问题的优化效果很好.