The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properti...The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined. High strength and good ductility of the steel were found. In the grain size range, the Hall-Petch dependency for yield stress, tensile strength, and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel. In the present study, the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined. The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.展开更多
In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning...In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning electron microscopy,and metallographic microscope.The results showed that the addition of Ce in steel limited the combination of S with Mn and Ca,transformed Al2O3 inclusion into spherical CeAlO3 inclusion,and modified the precipitate form of some composite inclusions of TiN and sulfide oxides into TiN precipitation alone.The inclusions were spheroidizing.The size of inclusions was decreased from 3–5μm to 1–2μm,and the distribution was dispersed.Ce played a role in purifying molten steel through desulphurization and deoxidization.Meanwhile,the addition of Ce in steel effectively increased the nucleation particles in the liquid phase,improved the nucleation rate,enlarged the equiaxed grain refinement area,and limited the development of columnar crystals.The average grain size of slab decreased from 45.76 to 35.25μm,and the proportion of large grain size(>50μm)decreased from 40.41%to 23.74%.The macrostructural examination of slab was improved from B0.5 to C2.0,which realized the refinement of the solidified structure and reduced the banded structure of hot rolled plate.In addition,due to the inheritance of refined structure in the upstream,the recrystallization of deformed austenite and the growth of grain after recrystallization were restrained,and a refined tempered sorbite structure was obtained.When rare earth element Ce was added,the width of the martensite lath bundle was narrowed from about 500 nm to about 200 nm,which realized a remarkable grain refinement strengthening and toughening effect.Mechanical properties such as tensile,yield,and low-temperature impact toughness were significantly improved.展开更多
By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cool...By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cooling+ laminar cooling" was simulated and the effects of ultra fast cooling ending temperature on microstructure had also been investigated. The hot rolling experiment was done by adopting "high temperature rolling-[-forepart ultra fast cooling" technologies at laboratory scale. The results revealed that ultra fast cooling can delay the decrease of disloca- tion density and refine ferrite grains. Diversity control of the microstructure and phase transformation strengthening can be realized by changing the ultra fast cooling ending temperature. With the decrease of ultra fast cooling ending temperature, the strength and toughness increase, but plasticity does not decrease obviously. The new technique can improve the yield strength by over 50 MPa. Therefore, the upgrade of mechanical properties of C-Mn steel can be realized by using "high temperature rolling+ ultra fast cooling+laminar cooling" technique. Compared with "low temperature rolling with large deformation degree" technique, this new technology can decrease the roiling force and in- crease the production efficiency.展开更多
基金Item Sponsored by Key Program of National Natural Science Foundation of China (50534010)
文摘The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined. High strength and good ductility of the steel were found. In the grain size range, the Hall-Petch dependency for yield stress, tensile strength, and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel. In the present study, the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined. The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.
基金financially supported by National Natural Science Foundation of China (No. 51774031)Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University (SKLASS 2017-12)
文摘In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning electron microscopy,and metallographic microscope.The results showed that the addition of Ce in steel limited the combination of S with Mn and Ca,transformed Al2O3 inclusion into spherical CeAlO3 inclusion,and modified the precipitate form of some composite inclusions of TiN and sulfide oxides into TiN precipitation alone.The inclusions were spheroidizing.The size of inclusions was decreased from 3–5μm to 1–2μm,and the distribution was dispersed.Ce played a role in purifying molten steel through desulphurization and deoxidization.Meanwhile,the addition of Ce in steel effectively increased the nucleation particles in the liquid phase,improved the nucleation rate,enlarged the equiaxed grain refinement area,and limited the development of columnar crystals.The average grain size of slab decreased from 45.76 to 35.25μm,and the proportion of large grain size(>50μm)decreased from 40.41%to 23.74%.The macrostructural examination of slab was improved from B0.5 to C2.0,which realized the refinement of the solidified structure and reduced the banded structure of hot rolled plate.In addition,due to the inheritance of refined structure in the upstream,the recrystallization of deformed austenite and the growth of grain after recrystallization were restrained,and a refined tempered sorbite structure was obtained.When rare earth element Ce was added,the width of the martensite lath bundle was narrowed from about 500 nm to about 200 nm,which realized a remarkable grain refinement strengthening and toughening effect.Mechanical properties such as tensile,yield,and low-temperature impact toughness were significantly improved.
基金the National Natural Science Foundation of China (Nos. 52071179, 5227010325)the Natural Science Foundation of Jiangsu Province, China (No. BK20221493)the Fundamental Research Funds for the Central Universities, China (Nos. 30920021160, 30919011405)。
基金Item Sponsored by National Natural Science Foundation of China(51004037)
文摘By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cooling+ laminar cooling" was simulated and the effects of ultra fast cooling ending temperature on microstructure had also been investigated. The hot rolling experiment was done by adopting "high temperature rolling-[-forepart ultra fast cooling" technologies at laboratory scale. The results revealed that ultra fast cooling can delay the decrease of disloca- tion density and refine ferrite grains. Diversity control of the microstructure and phase transformation strengthening can be realized by changing the ultra fast cooling ending temperature. With the decrease of ultra fast cooling ending temperature, the strength and toughness increase, but plasticity does not decrease obviously. The new technique can improve the yield strength by over 50 MPa. Therefore, the upgrade of mechanical properties of C-Mn steel can be realized by using "high temperature rolling+ ultra fast cooling+laminar cooling" technique. Compared with "low temperature rolling with large deformation degree" technique, this new technology can decrease the roiling force and in- crease the production efficiency.