China Geodetic Coordinate System 2000(CGCS2000)has been used for several years as a formal published reference frame.The coordinates of all global navigation satellite system(GNSS)stations in China need to be correcte...China Geodetic Coordinate System 2000(CGCS2000)has been used for several years as a formal published reference frame.The coordinates of all global navigation satellite system(GNSS)stations in China need to be corrected to align with the CGCS2000 frame.Different strategies can be adopted for the realization of an optimal reference frame.However,different strategies lead to different results,with differences as great as several decimeters when GNSS station coordinates are transformed into CGCS2000-defined coordinates.The two common methods for the coordinate correction of a GNSS station are quasi-stable adjustment under CGCS2000 and plate movement correction,and the differences between their results can be greater than 10 cm.In this study,a statistic method called"supervised clustering"is applied to the selection of GNSS reference stations;a new scheme named"partition spacing"for the grouping of all processed GNSS stations is proposed;and the plate movement correction method is used to correct the coordinates of all GNSS stations from the GNSS epoch to the CGCS2000 epoch.The results from the new partitioning method were found to be significantly better than those from the conventional station-blocking approach.When coordinates from the stations without grouping were used as the standard,the accuracy of all the three-dimensional coordinate components from the new partitioning method was better than 2 mm.The root mean squares(RMSs)of the velocities in the x,y,and z directions resulting from the supervised clustering method were 0.19,0.45,and 0.32 mm∙a1,respectively,which were much smaller than the values of 0.92,0.72,and 0.97 mm∙a1 that resulted from the conventional approach.In addition,singular spectrum analysis(SSA)was used to model and predict the position nonlinear movements.The modeling accuracies of SSA were better than 3,2,and 5 mm in the east(E),north(N),and up(U)directions,respectively;and its prediction accuracies were better than 5 mm and 1 cm for the horizontal and vertical domains,respectively.展开更多
It is well known that the accuracy of camera calibration is constrained by the size of the reference plate,it is difficult to fabricate large reference plates with high precision.Therefore,it is non-trivial to calibra...It is well known that the accuracy of camera calibration is constrained by the size of the reference plate,it is difficult to fabricate large reference plates with high precision.Therefore,it is non-trivial to calibrate a camera with large field of view(FOV).In this paper,a method is proposed to construct a virtual large reference plate with high precision.Firstly,a high precision datum plane is constructed with a laser interferometer and one-dimensional air guideway,and then the reference plate is positioned at different locations and orientations in the FOV of the camera.The feature points of reference plate are projected to the datum plane to obtain a virtual large reference plate with high-precision.The camera is moved to several positions to get different virtual reference plates,and the camera is calibrated with the virtual reference plates.The experimental results show that the mean re-projection error of the camera calibrated with the proposed method is 0.062 pixels.The length of a scale bar with standard length of 959.778mm was measured with a vision system composed of two calibrated cameras,and the length measurement error is 0.389mm.展开更多
基金This study is supported by the National Key Research and Development Program of China(2016YFB0501405)Natural Resources Innovation Platform Construction and Capacity Improvement(A19090)The Fundamental Research Funds for Chinese Academy of Surveying and Mapping(AR1903 and AR2005).
文摘China Geodetic Coordinate System 2000(CGCS2000)has been used for several years as a formal published reference frame.The coordinates of all global navigation satellite system(GNSS)stations in China need to be corrected to align with the CGCS2000 frame.Different strategies can be adopted for the realization of an optimal reference frame.However,different strategies lead to different results,with differences as great as several decimeters when GNSS station coordinates are transformed into CGCS2000-defined coordinates.The two common methods for the coordinate correction of a GNSS station are quasi-stable adjustment under CGCS2000 and plate movement correction,and the differences between their results can be greater than 10 cm.In this study,a statistic method called"supervised clustering"is applied to the selection of GNSS reference stations;a new scheme named"partition spacing"for the grouping of all processed GNSS stations is proposed;and the plate movement correction method is used to correct the coordinates of all GNSS stations from the GNSS epoch to the CGCS2000 epoch.The results from the new partitioning method were found to be significantly better than those from the conventional station-blocking approach.When coordinates from the stations without grouping were used as the standard,the accuracy of all the three-dimensional coordinate components from the new partitioning method was better than 2 mm.The root mean squares(RMSs)of the velocities in the x,y,and z directions resulting from the supervised clustering method were 0.19,0.45,and 0.32 mm∙a1,respectively,which were much smaller than the values of 0.92,0.72,and 0.97 mm∙a1 that resulted from the conventional approach.In addition,singular spectrum analysis(SSA)was used to model and predict the position nonlinear movements.The modeling accuracies of SSA were better than 3,2,and 5 mm in the east(E),north(N),and up(U)directions,respectively;and its prediction accuracies were better than 5 mm and 1 cm for the horizontal and vertical domains,respectively.
文摘It is well known that the accuracy of camera calibration is constrained by the size of the reference plate,it is difficult to fabricate large reference plates with high precision.Therefore,it is non-trivial to calibrate a camera with large field of view(FOV).In this paper,a method is proposed to construct a virtual large reference plate with high precision.Firstly,a high precision datum plane is constructed with a laser interferometer and one-dimensional air guideway,and then the reference plate is positioned at different locations and orientations in the FOV of the camera.The feature points of reference plate are projected to the datum plane to obtain a virtual large reference plate with high-precision.The camera is moved to several positions to get different virtual reference plates,and the camera is calibrated with the virtual reference plates.The experimental results show that the mean re-projection error of the camera calibrated with the proposed method is 0.062 pixels.The length of a scale bar with standard length of 959.778mm was measured with a vision system composed of two calibrated cameras,and the length measurement error is 0.389mm.