The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 ...The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.展开更多
Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were cont...Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were continuous flooding(CF),continuous flooding and aeration(CFA),and alternate wetting and drying(AWD).The results showed that the AWD and CFA treatments improved soil N transformation,rice growth,and N absorption and accumulation.Soil NO3–content,nitrification activity and ammonia-oxidising bacteria abundance,leaf area,nitrate reductase activity,and N absorption and accumulation in rice all increased in both cultivars.However,soil microbial biomass carbon and pH did not significantly change during the whole period of rice growth.Correlation analysis revealed a significant positive correlation between the nitrification activity and ammonia-oxidising bacteria abundance,and both of them significantly increased as the total N accumulation in rice increased.Our results indicated that improved soil O2 conditions led to changing soil N cycling and contributed to increases in N absorption and accumulation by rice in paddy fields.展开更多
基金Supported by the Key Technology Program of the Xinjiang Uygur Autonomous Region, China (No.200733144-1)the Knowledge Innovation Project of the Chinese of Academy of Sciences (No.KSCX2-YW-N-41)
文摘The effects of NaCl salinity and NO^-3 on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L^-1) and three NO^-3 levels (0.05, 5, and 10 mmol L^-1) in solution culture for 30 d. Addition of NO^-3 at 10 mmol L^-1 significantly improved the shoot (P 〈 0.001) and root (P 〈 0.001) growth and the promotive effect of NO^-3 was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P 〈 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO^-3 levels (P 〈 0.001), implying that Na^+ and NO3^- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na^+ in plant tissues were also significantly increased by higher NaCl treatments (P 〈 0.001). At 10 mmol L^-1 NO^-3, the concentrations of NO^-3 and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P 〈 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO^-3 supply.
基金the National Key Research and Development Program of China(Grant No.2016YFD300507)the National Natural Science Foundation of China(Grant No.31401343)the National Rice Industry Technology System of China(Grant No.CARS-01-04A).
文摘Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were continuous flooding(CF),continuous flooding and aeration(CFA),and alternate wetting and drying(AWD).The results showed that the AWD and CFA treatments improved soil N transformation,rice growth,and N absorption and accumulation.Soil NO3–content,nitrification activity and ammonia-oxidising bacteria abundance,leaf area,nitrate reductase activity,and N absorption and accumulation in rice all increased in both cultivars.However,soil microbial biomass carbon and pH did not significantly change during the whole period of rice growth.Correlation analysis revealed a significant positive correlation between the nitrification activity and ammonia-oxidising bacteria abundance,and both of them significantly increased as the total N accumulation in rice increased.Our results indicated that improved soil O2 conditions led to changing soil N cycling and contributed to increases in N absorption and accumulation by rice in paddy fields.