In a modern power system, there is often large difference in the decay speeds of transients. This could lead to numerical problems such as heavy simulation burden and singularity when the traditional methods are used ...In a modern power system, there is often large difference in the decay speeds of transients. This could lead to numerical problems such as heavy simulation burden and singularity when the traditional methods are used to estimate the stability re- gion of such a dynamic system with saturation nonlinearities. To overcome these problems, a reduced-order method, based on the singular perturbation theory, is suggested to estimate the stability region of a singular system with saturation nonlinearities. In the reduced-order method, a low-order linear dynamic system with saturation nonlinearities is constructed to estimate the stability region of the primary high-order system so that the singularity is eliminated and the estimation process is simplified. In addition, the analytical foundation of the reduction method is proven and the method is validated using a test power system with 3 buses and 5 machines.展开更多
In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced...In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced local Navier-Stokes equations. Reduced differential transform method and perturbation-iteration algorithm are applied to solve this problem. The convergence analysis was discussed for both methods. The numerical results of both methods are given at some Reynolds numbers and low Mach numbers, and compared with results of earlier studies in the review of the literatures. These two methods are easy and fast to implement, and the results are close to each other and other numerical results, so it can be said that these methods are useful in finding approximate analytical solutions to the unsteady incompressible flow problems at low Mach numbers.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50595411)the New Century Outstanding Investigator Program of the Ministry of Education (Grant No. NCET-04-0529)
文摘In a modern power system, there is often large difference in the decay speeds of transients. This could lead to numerical problems such as heavy simulation burden and singularity when the traditional methods are used to estimate the stability re- gion of such a dynamic system with saturation nonlinearities. To overcome these problems, a reduced-order method, based on the singular perturbation theory, is suggested to estimate the stability region of a singular system with saturation nonlinearities. In the reduced-order method, a low-order linear dynamic system with saturation nonlinearities is constructed to estimate the stability region of the primary high-order system so that the singularity is eliminated and the estimation process is simplified. In addition, the analytical foundation of the reduction method is proven and the method is validated using a test power system with 3 buses and 5 machines.
文摘In this work, approximate analytical solutions to the lid-driven square cavity flow problem, which satisfied two-dimensional unsteady incompressible Navier-Stokes equations, are presented using the kinetically reduced local Navier-Stokes equations. Reduced differential transform method and perturbation-iteration algorithm are applied to solve this problem. The convergence analysis was discussed for both methods. The numerical results of both methods are given at some Reynolds numbers and low Mach numbers, and compared with results of earlier studies in the review of the literatures. These two methods are easy and fast to implement, and the results are close to each other and other numerical results, so it can be said that these methods are useful in finding approximate analytical solutions to the unsteady incompressible flow problems at low Mach numbers.