A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)...A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)ions on the crystal structure and photoluminescence performance of Ca_(2.91)Si_(2−x)M_(x)O_(7):0.09Eu^(3+) phosphors were investigated.The X-ray diffraction(XRD),energy-dispersive X-ray spectroscopy(EDS),and X-ray photoelectron spectroscopy(XPS)results revealed that the structure of Ca_(3)Si_(2)O_(7) remained the same after the introduction of Al^(3+) and P^(5+) ions.The characteristic emission of Eu^(3+)-doped Ca_(3)Si_(2−x)M_(x)O_(7) phosphors exhibited two main peaks at 617 nm(red)and 593 nm(orange)under excitation at 394 nm,which originated from the^(5)D_(0)→^(7)F_(2)and^(5)D_(0)→^(7)F_(1) electron transitions of Eu^(3+) ions.After the partial substitution of Al^(3+) and P^(5+),the red emission intensities of the Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) phosphors were significantly enhanced by 1.88-and 1.42-fold,respectively,which is attributed to the crystal-field effect around Eu^(3+).Meanwhile,the luminescence intensities of the Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+) and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) phosphors at 210℃ were 79.36%and 77.53%of those at 30°C,respectively,indicating their excellent thermal stability.Moreover,the as-prepared Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+)and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) red-emitting phosphors were combined with a near-ultraviolet chip of 395 nm to fabricate red-light-emitting diode(LED)and white(w)-LED devices with excellent chromaticity features.In summary,Al^(3+)/P^(5+)-substituted Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) can serve as red-emitting phosphors for applications in w-LEDs.展开更多
A novel single-phase Sm^3+activated Ca5(PO4)2SiO4 phosphor was successfully fabricated via a conventional solid-state method,which can be e fficie ntly excited by near ultraviolet(n-UV)light-emitting chips.The crystal...A novel single-phase Sm^3+activated Ca5(PO4)2SiO4 phosphor was successfully fabricated via a conventional solid-state method,which can be e fficie ntly excited by near ultraviolet(n-UV)light-emitting chips.The crystal structure and luminescence properties were characterized and analyzed systematically by using relevant instruments.The Ca5(PO4)2SiO4:Sm^3+phosphor shows an orange-red emission peaking at600 nm under the excitation of 403 nm and the optimal doping concentration of Sm^3+is determined to be 0.08,The critical distance of Ca5(PO4)2SiO4:0.08 Sm^3+is calculated to be 1.849 nm and concentration quenching mechanism of the Sm^3+in Ca5(PO4)2SiO4 host is ascribed to energy transfer between nearestneighbor activators.The decay time of Ca5(PO4)2 SiO4:0,08 Sm^3+is determined to be 1.1957 ms.In addition,the effect of temperature on the emission intensity was also studied,72.4%of the initial intensity is still preserved at 250℃,better thermal stability compared to commercial phosphor YAG:Ce^3+indicates that Ca5(PO4)2SiO4:0.08 Sm^3+has excellent thermal stability and active energy is deduced to be 0.130 eV.All the results demonstrate that orange-red emitting Ca5(PO4)2SiO4:0.08 Sm3+phosphor exhibits good luminescent properties.Owing to the excellent thermal quenching luminescence property,Ca5(PO4)2SiO4:0.08 Sm^3+phosphor can be applied in n-UV white light emitting diodes and serve as the warm part of white light.展开更多
Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by flu...Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by fluorescence spectrophotometer and by powder X-ray diffraction, respectively. The emission intensity at 618 nm changes sharply when the concentration of Sr2+ (x) is less than 0.1 and the emission intensity reaches the maximum when x is equal to 0.007. There is an obviously broad excitation band at 270 nm when x is equal to 0.003 and it disappears gradually when x is over 0.01. The unit cell a parameter of Ca2-xSrxZn4Ti15O36∶Pr decreases while c parameter increases with the increases of the concentration of the doped Sr2+. When x is over 0.1 the value of the unit cell parameters a and c become stable. TL peaks of Ca2Zn4Ti15O36∶Pr, Ca1.993Sr0.007Zn4Ti15O36∶0.002Pr3+, 0.002Na+, are located at 62 ℃, 88 ℃, respectively, which indicates that there are deeper traps in Ca1.993Sr0.007Zn4 Ti15O36∶0.002Pr3+, 0.002Na+.展开更多
基金This work was financially supported by the Department of Science and Technology of Sichuan Province(No.2020YJ0157).
文摘A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)ions on the crystal structure and photoluminescence performance of Ca_(2.91)Si_(2−x)M_(x)O_(7):0.09Eu^(3+) phosphors were investigated.The X-ray diffraction(XRD),energy-dispersive X-ray spectroscopy(EDS),and X-ray photoelectron spectroscopy(XPS)results revealed that the structure of Ca_(3)Si_(2)O_(7) remained the same after the introduction of Al^(3+) and P^(5+) ions.The characteristic emission of Eu^(3+)-doped Ca_(3)Si_(2−x)M_(x)O_(7) phosphors exhibited two main peaks at 617 nm(red)and 593 nm(orange)under excitation at 394 nm,which originated from the^(5)D_(0)→^(7)F_(2)and^(5)D_(0)→^(7)F_(1) electron transitions of Eu^(3+) ions.After the partial substitution of Al^(3+) and P^(5+),the red emission intensities of the Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) phosphors were significantly enhanced by 1.88-and 1.42-fold,respectively,which is attributed to the crystal-field effect around Eu^(3+).Meanwhile,the luminescence intensities of the Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+) and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) phosphors at 210℃ were 79.36%and 77.53%of those at 30°C,respectively,indicating their excellent thermal stability.Moreover,the as-prepared Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+)and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) red-emitting phosphors were combined with a near-ultraviolet chip of 395 nm to fabricate red-light-emitting diode(LED)and white(w)-LED devices with excellent chromaticity features.In summary,Al^(3+)/P^(5+)-substituted Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) can serve as red-emitting phosphors for applications in w-LEDs.
基金supported by the Research Foundation for Youth Scholars of Beijing Technology and Business University (QNJJ2019-06,PXM2019_014213_000007)
文摘A novel single-phase Sm^3+activated Ca5(PO4)2SiO4 phosphor was successfully fabricated via a conventional solid-state method,which can be e fficie ntly excited by near ultraviolet(n-UV)light-emitting chips.The crystal structure and luminescence properties were characterized and analyzed systematically by using relevant instruments.The Ca5(PO4)2SiO4:Sm^3+phosphor shows an orange-red emission peaking at600 nm under the excitation of 403 nm and the optimal doping concentration of Sm^3+is determined to be 0.08,The critical distance of Ca5(PO4)2SiO4:0.08 Sm^3+is calculated to be 1.849 nm and concentration quenching mechanism of the Sm^3+in Ca5(PO4)2SiO4 host is ascribed to energy transfer between nearestneighbor activators.The decay time of Ca5(PO4)2 SiO4:0,08 Sm^3+is determined to be 1.1957 ms.In addition,the effect of temperature on the emission intensity was also studied,72.4%of the initial intensity is still preserved at 250℃,better thermal stability compared to commercial phosphor YAG:Ce^3+indicates that Ca5(PO4)2SiO4:0.08 Sm^3+has excellent thermal stability and active energy is deduced to be 0.130 eV.All the results demonstrate that orange-red emitting Ca5(PO4)2SiO4:0.08 Sm3+phosphor exhibits good luminescent properties.Owing to the excellent thermal quenching luminescence property,Ca5(PO4)2SiO4:0.08 Sm^3+phosphor can be applied in n-UV white light emitting diodes and serve as the warm part of white light.
文摘Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by fluorescence spectrophotometer and by powder X-ray diffraction, respectively. The emission intensity at 618 nm changes sharply when the concentration of Sr2+ (x) is less than 0.1 and the emission intensity reaches the maximum when x is equal to 0.007. There is an obviously broad excitation band at 270 nm when x is equal to 0.003 and it disappears gradually when x is over 0.01. The unit cell a parameter of Ca2-xSrxZn4Ti15O36∶Pr decreases while c parameter increases with the increases of the concentration of the doped Sr2+. When x is over 0.1 the value of the unit cell parameters a and c become stable. TL peaks of Ca2Zn4Ti15O36∶Pr, Ca1.993Sr0.007Zn4Ti15O36∶0.002Pr3+, 0.002Na+, are located at 62 ℃, 88 ℃, respectively, which indicates that there are deeper traps in Ca1.993Sr0.007Zn4 Ti15O36∶0.002Pr3+, 0.002Na+.