针对传统混沌加密系统密钥空间小,序列复杂度不足以及加密系统单一的问题,提出一种新的基于混沌系统的彩色图像三重置乱加密算法。利用Logistic混沌序列对彩色图像各个像素点的三原色(red green blue,RGB)顺序进行置乱,应用Rabinovich...针对传统混沌加密系统密钥空间小,序列复杂度不足以及加密系统单一的问题,提出一种新的基于混沌系统的彩色图像三重置乱加密算法。利用Logistic混沌序列对彩色图像各个像素点的三原色(red green blue,RGB)顺序进行置乱,应用Rabinovich超混沌系统产生的四维混沌序列中的一组序列对图像的像素点位置进行分块置乱,使用余下的3组序列分通道对图像离散小波变换后的低频系数进行置乱与扩散。该算法充分利用混沌序列特征,将传统混沌置乱加密方法改进,使彩色图像像素点在RGB 3个通道内进行置乱,并将扩散过程与离散小波变换紧密结合。通过实验仿真,对该算法的密钥空间、敏感度、抗统计攻击能力和抗差分攻击能力进行分析,结果表明,该算法能够安全有效地加密图像,保护图像信息安全。展开更多
为了研究高压脉冲电场对毛发染色效果的影响,试验以18~28岁年龄段人群的黑色头发和染发剂为试材,以染发后毛发的RGB(red green blue)模型提取值作为响应值,并采用等响应面试验法设计试验,以构建和分析高压脉冲电场的电场强度、脉冲宽度...为了研究高压脉冲电场对毛发染色效果的影响,试验以18~28岁年龄段人群的黑色头发和染发剂为试材,以染发后毛发的RGB(red green blue)模型提取值作为响应值,并采用等响应面试验法设计试验,以构建和分析高压脉冲电场的电场强度、脉冲宽度以及脉冲个数对毛发染色效果影响的数学模型和机理。试验结果表明:高压脉冲电场同时处理头发和染发剂后最高可提升RGB参数中的蓝色通道值B为3.7%,对应的最优化工艺化参数为:电场强度1125 V/mm、脉冲宽度175μs、脉冲个数52个。因此,高压脉冲电场对头发和染发剂进行处理后再进行染色可改善着色效果,并为毛发染色工艺优化奠定一定基础。展开更多
基于表观的视线估计方法主要是在二维的三原色(red green blue,RGB)图像上进行,当头部在自由运动时视线估计精度较低,且目前基于卷积神经网络的表观视线估计都普遍使用池化来增大特征图中像素点的感受野,导致了特征图的信息损失,提出一...基于表观的视线估计方法主要是在二维的三原色(red green blue,RGB)图像上进行,当头部在自由运动时视线估计精度较低,且目前基于卷积神经网络的表观视线估计都普遍使用池化来增大特征图中像素点的感受野,导致了特征图的信息损失,提出一种基于膨胀卷积神经网络的多模态融合视线估计模型。在该模型中,利用膨胀卷积设计了一种叫GENet(gaze estimation network)的网络提取眼睛的RGB和深度图像的特征图,并利用卷积神经网络的全连接层自动融合头部姿态和2种图像的特征图,从而进行视线估计。实验部分在公开数据集Eyediap上验证了设计的模型,并将设计的模型同其他视线估计模型进行比较。实验结果表明,提出的视线估计模型可以在自由的头部运动下准确地估计视线方向。展开更多
Gesture recognition has been widely used for human-robot interaction.At present,a problem in gesture recognition is that the researchers did not use the learned knowledge in existing domains to discover and recognize ...Gesture recognition has been widely used for human-robot interaction.At present,a problem in gesture recognition is that the researchers did not use the learned knowledge in existing domains to discover and recognize gestures in new domains.For each new domain,it is required to collect and annotate a large amount of data,and the training of the algorithm does not benefit from prior knowledge,leading to redundant calculation workload and excessive time investment.To address this problem,the paper proposes a method that could transfer gesture data in different domains.We use a red-green-blue(RGB)Camera to collect images of the gestures,and use Leap Motion to collect the coordinates of 21 joint points of the human hand.Then,we extract a set of novel feature descriptors from two different distributions of data for the study of transfer learning.This paper compares the effects of three classification algorithms,i.e.,support vector machine(SVM),broad learning system(BLS)and deep learning(DL).We also compare learning performances with and without using the joint distribution adaptation(JDA)algorithm.The experimental results show that the proposed method could effectively solve the transfer problem between RGB Camera and Leap Motion.In addition,we found that when using DL to classify the data,excessive training on the source domain may reduce the accuracy of recognition in the target domain.展开更多
针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出...针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。展开更多
文摘针对传统混沌加密系统密钥空间小,序列复杂度不足以及加密系统单一的问题,提出一种新的基于混沌系统的彩色图像三重置乱加密算法。利用Logistic混沌序列对彩色图像各个像素点的三原色(red green blue,RGB)顺序进行置乱,应用Rabinovich超混沌系统产生的四维混沌序列中的一组序列对图像的像素点位置进行分块置乱,使用余下的3组序列分通道对图像离散小波变换后的低频系数进行置乱与扩散。该算法充分利用混沌序列特征,将传统混沌置乱加密方法改进,使彩色图像像素点在RGB 3个通道内进行置乱,并将扩散过程与离散小波变换紧密结合。通过实验仿真,对该算法的密钥空间、敏感度、抗统计攻击能力和抗差分攻击能力进行分析,结果表明,该算法能够安全有效地加密图像,保护图像信息安全。
文摘为了研究高压脉冲电场对毛发染色效果的影响,试验以18~28岁年龄段人群的黑色头发和染发剂为试材,以染发后毛发的RGB(red green blue)模型提取值作为响应值,并采用等响应面试验法设计试验,以构建和分析高压脉冲电场的电场强度、脉冲宽度以及脉冲个数对毛发染色效果影响的数学模型和机理。试验结果表明:高压脉冲电场同时处理头发和染发剂后最高可提升RGB参数中的蓝色通道值B为3.7%,对应的最优化工艺化参数为:电场强度1125 V/mm、脉冲宽度175μs、脉冲个数52个。因此,高压脉冲电场对头发和染发剂进行处理后再进行染色可改善着色效果,并为毛发染色工艺优化奠定一定基础。
文摘基于表观的视线估计方法主要是在二维的三原色(red green blue,RGB)图像上进行,当头部在自由运动时视线估计精度较低,且目前基于卷积神经网络的表观视线估计都普遍使用池化来增大特征图中像素点的感受野,导致了特征图的信息损失,提出一种基于膨胀卷积神经网络的多模态融合视线估计模型。在该模型中,利用膨胀卷积设计了一种叫GENet(gaze estimation network)的网络提取眼睛的RGB和深度图像的特征图,并利用卷积神经网络的全连接层自动融合头部姿态和2种图像的特征图,从而进行视线估计。实验部分在公开数据集Eyediap上验证了设计的模型,并将设计的模型同其他视线估计模型进行比较。实验结果表明,提出的视线估计模型可以在自由的头部运动下准确地估计视线方向。
基金supported by National Nature Science Foundation of China(NSFC)(Nos.U20A20200,61811530281,and 61861136009)Guangdong Regional Joint Foundation(No.2019B1515120076)+1 种基金Fundamental Research for the Central Universitiesin part by the Foshan Science and Technology Innovation Team Special Project(No.2018IT100322)。
文摘Gesture recognition has been widely used for human-robot interaction.At present,a problem in gesture recognition is that the researchers did not use the learned knowledge in existing domains to discover and recognize gestures in new domains.For each new domain,it is required to collect and annotate a large amount of data,and the training of the algorithm does not benefit from prior knowledge,leading to redundant calculation workload and excessive time investment.To address this problem,the paper proposes a method that could transfer gesture data in different domains.We use a red-green-blue(RGB)Camera to collect images of the gestures,and use Leap Motion to collect the coordinates of 21 joint points of the human hand.Then,we extract a set of novel feature descriptors from two different distributions of data for the study of transfer learning.This paper compares the effects of three classification algorithms,i.e.,support vector machine(SVM),broad learning system(BLS)and deep learning(DL).We also compare learning performances with and without using the joint distribution adaptation(JDA)algorithm.The experimental results show that the proposed method could effectively solve the transfer problem between RGB Camera and Leap Motion.In addition,we found that when using DL to classify the data,excessive training on the source domain may reduce the accuracy of recognition in the target domain.
文摘针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。