This paper considers a discrete-time queue with N-policy and LAS-DA(late arrival system with delayed access) discipline.By using renewal process theory and probability decomposition techniques,the authors derive the r...This paper considers a discrete-time queue with N-policy and LAS-DA(late arrival system with delayed access) discipline.By using renewal process theory and probability decomposition techniques,the authors derive the recursive expressions of the queue-length distributions at epochs n^-,n^+,and n.Furthermore,the authors obtain the stochastic decomposition of the queue length and the relations between the equilibrium distributions of the queue length at different epochs(n^-,n^+,n and departure epoch D_n).展开更多
In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic i...In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.展开更多
Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed t...Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.展开更多
This paper focuses on establishing the multiscale prediction models for wind speed and power in wind farm by the average wind speed collected from the history records. Each type of the models is built with different t...This paper focuses on establishing the multiscale prediction models for wind speed and power in wind farm by the average wind speed collected from the history records. Each type of the models is built with different time scales and by different approaches. There are three types of them that a short-term model for a day ahead is based on the least squares support vector machine (LSSVM), a medium-term model for a month ahead is on the combination of LSSVM and wavelet transform (WT), and a long-term model for a year ahead is on the empirical mode decomposition (EMD) and recursive least square (RLS) approaches. The simulation studies show that the average value of the mean absolute percentage error (MAPE) is 4.91%, 6.57% and 16.25% for the short-term, the medium-term and the long-term prediction, respectively. The predicted data also can be used to calculate the predictive values of output power for the wind farm in different time scales, combined with the generator's power characteristic, meteorologic factors and unit efficiency under various operating conditions.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.70871084The Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 200806360001a grant from the "project 211(PhaseⅢ)" of the Southwestern University of Finance and Economics, Scientific Research Fund of Southwestern University of Finance and Economics
文摘This paper considers a discrete-time queue with N-policy and LAS-DA(late arrival system with delayed access) discipline.By using renewal process theory and probability decomposition techniques,the authors derive the recursive expressions of the queue-length distributions at epochs n^-,n^+,and n.Furthermore,the authors obtain the stochastic decomposition of the queue length and the relations between the equilibrium distributions of the queue length at different epochs(n^-,n^+,n and departure epoch D_n).
基金The National Key Technology R& D Program of Chinaduring the 11th Five-Year Plan Period (No.2006BAJ18B03).
文摘In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.
文摘Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.
基金supported by the National Natural Science Foundation of China (No. 50967001)the project for returned talents after studying abroad
文摘This paper focuses on establishing the multiscale prediction models for wind speed and power in wind farm by the average wind speed collected from the history records. Each type of the models is built with different time scales and by different approaches. There are three types of them that a short-term model for a day ahead is based on the least squares support vector machine (LSSVM), a medium-term model for a month ahead is on the combination of LSSVM and wavelet transform (WT), and a long-term model for a year ahead is on the empirical mode decomposition (EMD) and recursive least square (RLS) approaches. The simulation studies show that the average value of the mean absolute percentage error (MAPE) is 4.91%, 6.57% and 16.25% for the short-term, the medium-term and the long-term prediction, respectively. The predicted data also can be used to calculate the predictive values of output power for the wind farm in different time scales, combined with the generator's power characteristic, meteorologic factors and unit efficiency under various operating conditions.