期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主要特征抽取的重现概念漂移处理算法 被引量:5
1
作者 冯超 文益民 汤凌冰 《数据采集与处理》 CSCD 北大核心 2016年第2期315-324,共10页
针对重现概念漂移检测中的概念表征和分类器选择问题,提出了一种适用于含重现概念漂移的数据流分类的算法——基于主要特征抽取的概念聚类和预测算法(Conceptual clustering and prediction through main feature extraction,MFCCP)。MF... 针对重现概念漂移检测中的概念表征和分类器选择问题,提出了一种适用于含重现概念漂移的数据流分类的算法——基于主要特征抽取的概念聚类和预测算法(Conceptual clustering and prediction through main feature extraction,MFCCP)。MFCCP通过计算不同批次样本的主要特征及影响因子的差异度以识别重复出现的概念,为每个概念维持且及时更新一个分类器,并依据Hoeffding不等式选择最合适的分类器对当前样本集实施分类,以提高对概念漂移的反应能力。在3个数据集上的实验表明:MFCCP在含重现概念漂移的数据集上的分类准确率,对概念漂移的反应能力及对概念漂移检测的准确率均明显优于其他4种对比算法,且MFCCP也适用于对不含重现概念漂移的数据流进行分类。 展开更多
关键词 重现概念漂移 主要特征 影响因子 数据流 Hoeffding不等式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部