期刊文献+
共找到1,843篇文章
< 1 2 93 >
每页显示 20 50 100
基于反馈型神经网络的光伏系统发电功率预测 被引量:80
1
作者 张艳霞 赵杰 《电力系统保护与控制》 EI CSCD 北大核心 2011年第15期96-101,109,共7页
分析了光伏系统的发电特性以及影响光伏发电的因素,建立了反馈型神经网络光伏系统发电功率预测模型。该模型采用Elman神经网络结构,利用其强大计算能力、映射能力和稳定性,将光伏发电的历史数据和天气情况一同作为样本,对模型进行训练... 分析了光伏系统的发电特性以及影响光伏发电的因素,建立了反馈型神经网络光伏系统发电功率预测模型。该模型采用Elman神经网络结构,利用其强大计算能力、映射能力和稳定性,将光伏发电的历史数据和天气情况一同作为样本,对模型进行训练和发电功率预测。仿真结果表明,该方法建立的预测模型具有较高的精度,为解决光伏系统发电功率预测提供了一种可行路径。 展开更多
关键词 光伏系统 反馈型神经网络 发电功率预测 气候环境
下载PDF
循环神经网络研究综述 被引量:65
2
作者 刘建伟 宋志妍 《控制与决策》 EI CSCD 北大核心 2022年第11期2753-2768,共16页
循环神经网络是神经网络序列模型的主要实现形式,近几年得到迅速发展,其是机器翻译、机器问题回答、序列视频分析的标准处理手段,也是对于手写体自动合成、语音处理和图像生成等问题的主流建模手段.鉴于此,循环神经网络的各分支按照网... 循环神经网络是神经网络序列模型的主要实现形式,近几年得到迅速发展,其是机器翻译、机器问题回答、序列视频分析的标准处理手段,也是对于手写体自动合成、语音处理和图像生成等问题的主流建模手段.鉴于此,循环神经网络的各分支按照网络结构进行详细分类,大致分为3大类:一是衍生循环神经网络,这类网络是基于基本RNNs模型的结构衍生变体,即对RNNs的内部结构进行修改;二是组合循环神经网络,这类网络将其他一些经典的网络模型或结构与第一类衍生循环神经网络进行组合,得到更好的模型效果,是一种非常有效的手段;三是混合循环神经网络,这类网络模型既有不同网络模型的组合,又在RNNs内部结构上进行修改,是同属于前两类网络分类的结构.为了更加深入地理解循环神经网络,进一步介绍与循环神经网络经常混为一谈的递归神经网络结构以及递归神经网络与循环神经网络的区别和联系.在详略描述上述模型的应用背景、网络结构以及模型变种后,对各个模型的特点进行总结和比较,并对循环神经网络模型进行展望和总结. 展开更多
关键词 循环神经网络 衍生循环神经网络 组合循环神经网络 混合循环神经网络
原文传递
基于蚁群优化算法递归神经网络的短期负荷预测 被引量:46
3
作者 邹政达 孙雅明 张智晟 《电网技术》 EI CSCD 北大核心 2005年第3期59-63,共5页
为了克服BP算法收敛速度慢和易于陷入局部最小的不足,作者提出将蚁群优化算法用于短期负荷预测的递归神经网络模型学习算法,对实际负荷系统日、周预测的仿真测试表明,该模型能有效地提高短期负荷预测的精度,对工作日和休息日都具有良好... 为了克服BP算法收敛速度慢和易于陷入局部最小的不足,作者提出将蚁群优化算法用于短期负荷预测的递归神经网络模型学习算法,对实际负荷系统日、周预测的仿真测试表明,该模型能有效地提高短期负荷预测的精度,对工作日和休息日都具有良好的稳定性和适应能力,其预测性能明显优于基于BP算法的递归神经网络(BP-RNN)和基于遗传算法的递归神经网络(GA-RNN)。 展开更多
关键词 电力系统 短期负荷预测 蚁群优化算法 递归神经网络 学习算法
下载PDF
基于支持向量机的时间序列预测模型分析与应用 被引量:45
4
作者 尉询楷 李应红 +1 位作者 张朴 路建明 《系统工程与电子技术》 EI CSCD 北大核心 2005年第3期529-532,共4页
阐述了支持向量机在时间序列预测中应用的理论基础,给出了时间序列预测分析的基本框架。将支持向量机预测模型应用于某型航空发动机的滑油金属含量监测中,并与递归神经网络预测器进行了比较。得出支持向量机由于采用了新型的结构风险最... 阐述了支持向量机在时间序列预测中应用的理论基础,给出了时间序列预测分析的基本框架。将支持向量机预测模型应用于某型航空发动机的滑油金属含量监测中,并与递归神经网络预测器进行了比较。得出支持向量机由于采用了新型的结构风险最小化准则表现出优秀的推广能力,可预测区间较长且具有较高的准确度,而递归神经网络模型在中、短期预测中与支持向量机相差不大,在较长区间预测中效果较差的结论。 展开更多
关键词 支持向量回归 递归神经网络 时间序列预测 建模与应用
下载PDF
基于深度学习的电力大数据融合与异常检测方法 被引量:38
5
作者 刘冬兰 马雷 +2 位作者 刘新 李冬 常英贤 《计算机应用与软件》 北大核心 2018年第4期61-64,136,共5页
为了充分利用电力大数据中的异构数据源挖掘出电网中存在的安全威胁,采用深度受限玻尔兹曼机将不同格式的异构数据映射到统一的嵌入式向量空间,实现了异构数据的融合。采用循环神经网络对得到的嵌入式向量数据建立画像,实现了数据中异... 为了充分利用电力大数据中的异构数据源挖掘出电网中存在的安全威胁,采用深度受限玻尔兹曼机将不同格式的异构数据映射到统一的嵌入式向量空间,实现了异构数据的融合。采用循环神经网络对得到的嵌入式向量数据建立画像,实现了数据中异常事件的检测。实验结果表明,提出的异常检测方法在提出的互信息量度量指标中具有很高的互信息量。此外提出的方法在准确率、误报率和漏报率中的结果也优于其他异常检测方法。 展开更多
关键词 电力大数据 受限玻尔兹曼机 循环神经网络 异常检测 深度学习 数据融合
下载PDF
基于双向LSTM模型的文本情感分类 被引量:33
6
作者 任勉 甘刚 《计算机工程与设计》 北大核心 2018年第7期2064-2068,共5页
为解决文本情感分类研究中传统循环神经网络模型存在梯度消失和爆炸问题,提出一种基于双向长短时记忆循环神经网络模型(Bi-LSTM)。通过双向传播机制获取文本中完整的上下文信息,采用CBOW模型训练词向量,减小词向量间的稀疏度,结合栈式... 为解决文本情感分类研究中传统循环神经网络模型存在梯度消失和爆炸问题,提出一种基于双向长短时记忆循环神经网络模型(Bi-LSTM)。通过双向传播机制获取文本中完整的上下文信息,采用CBOW模型训练词向量,减小词向量间的稀疏度,结合栈式自编码深度神经网络作为分类器。实验结果表明,Bi-LSTM模型比传统循环神经网络LSTM模型分类效果更好,对比实验中Bi-LSTM2能达到更优的召回率和准确率。 展开更多
关键词 双向长短时记忆循环神经网络 词向量 长短时记忆网络 循环神经网络 文本情感倾向性分析
下载PDF
战场对敌目标战术意图智能识别模型研究 被引量:31
7
作者 欧微 柳少军 +1 位作者 贺筱媛 曹占广 《计算机仿真》 北大核心 2017年第9期10-14,19,共6页
对战场敌方目标战术意图的快速、准确和自动识别,是智能决策的前提和基础。针对传统意图识别模型在知识表达、网络训练和时序特征学习上面临的困难,提出一种模拟指挥员进行情况判断时的记忆机制和推理模式、基于长短时记忆循环神经网络... 对战场敌方目标战术意图的快速、准确和自动识别,是智能决策的前提和基础。针对传统意图识别模型在知识表达、网络训练和时序特征学习上面临的困难,提出一种模拟指挥员进行情况判断时的记忆机制和推理模式、基于长短时记忆循环神经网络的战场目标意图智能识别模型,构建了模型的基本框架、设计了相应的时序特征编码方法、标签知识封装与模式解析机制,并通过采用学习因子自适应调整策略提高模型的训练效率。测试结果表明,所提模型具有比传统循环神经网络模型更好的收敛性能,能以较高的识别准确率实现对敌方目标战术意图的自动识别。 展开更多
关键词 意图识别 时序特征 循环神经网络 长短时记忆网络
下载PDF
基于循环神经网络的语音识别模型 被引量:24
8
作者 朱小燕 王昱 徐伟 《计算机学报》 EI CSCD 北大核心 2001年第2期213-218,共6页
近年来基于隐马尔可夫模型 (HMM)的语音识别技术得到很大发展 .然而 HMM模型有着一定的局限性 ,如何克服 HMM的一阶假设和独立性假设带来的问题一直是研究讨论的热点 .在语音识别中引入神经网络的方法是克服 HMM局限性的一条途径 .该文... 近年来基于隐马尔可夫模型 (HMM)的语音识别技术得到很大发展 .然而 HMM模型有着一定的局限性 ,如何克服 HMM的一阶假设和独立性假设带来的问题一直是研究讨论的热点 .在语音识别中引入神经网络的方法是克服 HMM局限性的一条途径 .该文将循环神经网络应用于汉语语音识别 ,修改了原网络模型并提出了相应的训练方法 .实验结果表明该模型具有良好的连续信号处理性能 ,与传统的 HMM模型效果相当 .新的训练策略能够在提高训练速度的同时 ,使得模型分类性能有明显提高 . 展开更多
关键词 语音识别 隐马尔可夫模型 循环神经网络 学习算法
下载PDF
基于深度学习的图像描述研究 被引量:28
9
作者 杨楠 南琳 +1 位作者 张丁一 库涛 《红外与激光工程》 EI CSCD 北大核心 2018年第2期9-16,共8页
卷积神经网络(Convolution Neural Networks,CNN)和循环神经网络(Recurrent Neural Networks,RNN)在图像分类、计算机视觉、自然语言处理、语音识别、机器翻译、语义分析等领域取得了迅速的发展,引起了研究者对计算机自动生成图像描述... 卷积神经网络(Convolution Neural Networks,CNN)和循环神经网络(Recurrent Neural Networks,RNN)在图像分类、计算机视觉、自然语言处理、语音识别、机器翻译、语义分析等领域取得了迅速的发展,引起了研究者对计算机自动生成图像描述的广泛关注。目前图像描述存在的主要问题有输入文本数据稀疏、模型存在过拟合、模型损失函数震荡难以收敛等问题。文中使用NIC作为基线模型,针对数据稀疏问题,改变了基线模型中的文本one-hot表示,使用word2vec对文本进行映射,为了防止过拟合,在模型中加入了正则项和使用Dropout技术,并在词序记忆方面取得创新,引入联想记忆单元GRU,用于文本生成。在试验中使用Adam Optimizer优化器进行参数迭代更新。实验结果表明:改进后的模型参数减少且收敛速度大幅加快,损失函数曲线更加平滑,损失最大降至2.91,模型的准确率比NIC提高了接近15%。实验有效地验证了在模型当中使用word2vec对文本进行映射可明显缓解数据稀疏问题,加入正则项和使用Dropout技术可有效防止模型过拟合,引入联想记忆单元GRU能够大幅减少模型训练参数,加快算法收敛速度,进而提高整个模型的准确率。 展开更多
关键词 卷积神经网络 循环神经网络 门控循环单元 自然语言处理 图像描述
下载PDF
基于递归神经网络的一类非线性无模型系统的自适应控制 被引量:12
10
作者 李明忠 王福利 《控制与决策》 EI CSCD 北大核心 1997年第1期64-67,74,共5页
给出了基于递归神经网络非线性无模型系统的自适应控制方案,它具有灵活、简单、方便等特点,可以处理传统方法和非线性无模型系统自适应控制方法不能控制或控制效果不理想的非线性对象。理论分析和仿真结果证明了这种方法的优越性。
关键词 递归神经网络 非线性 无模型系统 自适应控制
下载PDF
回声状态网络的研究进展 被引量:28
11
作者 罗熊 黎江 孙增圻 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第2期217-222,共6页
回声状态网络是近年来新兴的一种递归神经网络,独特而简单的训练方式以及高精度的训练结果已使其成为当前研究的热点之一.在该网络中,引入了储备池计算模式这一新的神经网络的建设方案,克服了之前网络模型基于梯度下降的学习算法所难以... 回声状态网络是近年来新兴的一种递归神经网络,独特而简单的训练方式以及高精度的训练结果已使其成为当前研究的热点之一.在该网络中,引入了储备池计算模式这一新的神经网络的建设方案,克服了之前网络模型基于梯度下降的学习算法所难以避免的收敛慢和容易陷入局部极小等问题.围绕这种新型网络结构,国内外许多学者开展了多样的研究.本文全面深入介绍了回声状态网络这一新兴技术,讨论了回声状态网络的优缺点,并综合近年的研究现状,总结了回声状态网络的主要研究工作进展和未来的研究方向. 展开更多
关键词 回声状态网络 储备池计算 递归神经网络
原文传递
基于反馈的手写体字符识别方法的研究 被引量:18
12
作者 朱小燕 史一凡 《计算机学报》 EI CSCD 北大核心 2002年第5期476-482,共7页
该文提出了一种基于反馈的手写体字符识别方法 .该方法将人工神经网络结构及学习算法运用于系统反馈机制中 ,并从理论上证明了该学习方法是可收敛的 ,保证了算法的有效性 .同时给出反馈的可视化约束及反馈的判别准则 .试验结果证明了该... 该文提出了一种基于反馈的手写体字符识别方法 .该方法将人工神经网络结构及学习算法运用于系统反馈机制中 ,并从理论上证明了该学习方法是可收敛的 ,保证了算法的有效性 .同时给出反馈的可视化约束及反馈的判别准则 .试验结果证明了该方法大大降低了高噪音手写体数字的识别率 . 展开更多
关键词 手写体字符识别 神经网络 学习算法 计算机
下载PDF
基于门循环单元神经网络的中文分词法 被引量:22
13
作者 李雪莲 段鸿 许牧 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期237-243,共7页
目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任... 目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任务的方法,该方法可以自动学习特征,并有效建模长距离依赖信息,但是该模型较为复杂,存在模型训练和预测时间长的缺陷.针对该问题,提出了基于门循环单元(gated recurrent unit,GRU)神经网络的中文分词法,该方法继承了LSTM模型可自动学习特征、能有效建立长距离依赖信息的优点,具有与基于LSTM神经网络中文分词法相当的性能,并在速度上有显著提升. 展开更多
关键词 自然语言处理 中文分词 门循环单元 字嵌入 循环神经网络
下载PDF
基于循环神经网络的缝洞型油藏油井产量预测 被引量:20
14
作者 周于皓 刘慧卿 +2 位作者 祁鹏 赵萌 陈宇 《计算物理》 EI CSCD 北大核心 2018年第6期668-674,共7页
利用神经网络的强大非线性映射和拟合能力,构建神经网络产量预测模型,并针对油田生产数据的高误差、易缺省等特性和曲线拟合预测不易收敛的情况,提出了训练数据集扩充方法和改良的均方误差损失函数.在拟合油井产量方面取得了显著的效果.
关键词 缝洞型油藏 产量预测 循环神经网络 反向传播算法
原文传递
基于回归神经网络的非线性时变系统辨识 被引量:9
15
作者 邹高峰 王正欧 《控制与决策》 EI CSCD 北大核心 2002年第5期517-521,共5页
为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快... 为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快速收敛性的扩展卡尔曼滤波学习算法 ,大大提高了学习收敛速度 ;并推导了一种基于单个神经元的局部化算法 ,减少了计算量。仿真实例证明 ,所提出的算法是有效的。 展开更多
关键词 回归神经网络 非线性时变系统 系统辨识 扩展卡尔曼滤波 人工神经网络
下载PDF
AM-BRNN:一种基于深度学习的文本摘要自动抽取模型 被引量:19
16
作者 沈华东 彭敦陆 《小型微型计算机系统》 CSCD 北大核心 2018年第6期1184-1189,共6页
是文本主要内容和核心思想的最小化表达,对从海量文本数据中快速寻找有价值的信息具有重要意义.利用深度神经网络Encoder-Decoder基本框架,通过引入注意力模型,提出文本摘要抽取的深层学习模型——AM-BRNN.论文先根据中文文本的语言特点... 是文本主要内容和核心思想的最小化表达,对从海量文本数据中快速寻找有价值的信息具有重要意义.利用深度神经网络Encoder-Decoder基本框架,通过引入注意力模型,提出文本摘要抽取的深层学习模型——AM-BRNN.论文先根据中文文本的语言特点,构建句子特征向量抽取算法,形成文本特征向量矩阵,再将其输入到AM-BRNN深层学习模型中,双向循环神经网络编码出中间语义向量,最后利用注意力模型与单向循环神经网络解码中间语义向量,实现摘要句子的抽取.实验结果表明,AM-BRNN能较准确且稳定的抽取摘要句子,相比其他模型具有更好抽取效果. 展开更多
关键词 文本摘要 深度学习 循环神经网络
下载PDF
一种递归神经网络的快速并行算法 被引量:14
17
作者 李鸿儒 顾树生 《自动化学报》 EI CSCD 北大核心 2004年第4期516-522,共7页
针对递归神经网络BP(Back Propagation)学习算法收敛慢的缺陷,提出一种新的递归神经网络快速并行学习算法.首先,引入递推预报误差(RPE)学习算法,并且证明了其稳定性;进一步地,为了克服RPE算法集中运算的不足,设计完整的并行结构算法.本... 针对递归神经网络BP(Back Propagation)学习算法收敛慢的缺陷,提出一种新的递归神经网络快速并行学习算法.首先,引入递推预报误差(RPE)学习算法,并且证明了其稳定性;进一步地,为了克服RPE算法集中运算的不足,设计完整的并行结构算法.本算法将计算分配到神经网络中的每个神经元,完全符合神经网络的并行结构特点,也利于硬件实现.仿真结果表明,该算法比传统的递归BP学习算法具有更好的收敛性能.理论分析和仿真实验证明,该算法与RPE集中运算算法相比可以大大节省计算时间. 展开更多
关键词 递归神经网络 递推预报误差 并行算法 集中运算
下载PDF
基于递归神经网络的多变量系统预测控制 被引量:10
18
作者 张燕 王繁珍 +1 位作者 陈增强 袁著祉 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期49-53,61,共6页
针对线性PID控制器系数难以整定的问题,构造了一种用神经网络实现的非线性PID控制器.多个具有相同结构的非线性PID控制器并联,对多变量系统实现解耦控制器.结合预测控制的思想,提出两种控制方案.第一种是在递归多步预测的基础上,在... 针对线性PID控制器系数难以整定的问题,构造了一种用神经网络实现的非线性PID控制器.多个具有相同结构的非线性PID控制器并联,对多变量系统实现解耦控制器.结合预测控制的思想,提出两种控制方案.第一种是在递归多步预测的基础上,在广义最小方差目标函数下实现控制,第二种利用多步预测目标函数在线修正解耦控制器的权值.仿真实验表明这两种方法的有效性. 展开更多
关键词 预测控制 解耦控制 递归神经网络 非线性PID控制
下载PDF
神经网络结构的递归T-S模糊模型 被引量:10
19
作者 李翔 陈增强 袁著祉 《系统工程学报》 CSCD 2001年第4期268-274,共7页
提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建... 提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建模方面 TSFRNN比 TSFNN更加优越 . 展开更多
关键词 递归神经网络 T-S模糊模型 非线性系统 建模 学习算法
下载PDF
基于循环神经网络的网络舆情趋势预测研究 被引量:16
20
作者 孙靖超 周睿 +1 位作者 李培岳 芦天亮 《情报科学》 CSSCI 北大核心 2018年第8期118-122,127,共6页
【目的/意义】网络舆情预测由于对指导政府工作,维护社会稳定具有很高的现实意义,一直是网络安全领域研究工作的关注重点。但是网络舆情演化趋势复杂,影响因素众多,前人工作多考虑了单变量因素,忽视了多因素对趋势的影响,且前人采用的... 【目的/意义】网络舆情预测由于对指导政府工作,维护社会稳定具有很高的现实意义,一直是网络安全领域研究工作的关注重点。但是网络舆情演化趋势复杂,影响因素众多,前人工作多考虑了单变量因素,忽视了多因素对趋势的影响,且前人采用的传统模型由于自身的局限性,针对非线性场景的预测很难收到较好效果。【方法/过程】为解决前人研究的不足,本文设计了一种基于循环神经网络的自适应学习率的网络舆情模型,根据舆情数据特点选取了多种特征构建了循环神经网络序列生成模型,针对循环神经网络模型收敛困难的问题,通过连续最优掷币策略自适应调节学习率来提高训练速度和预测精度。【结果/结论】实验结果表明,与传统方式和普通神经网络相比,本文方法有着更好的舆情预测效果。 展开更多
关键词 网络舆情 循环神经网络 时间序列 舆情预测
原文传递
上一页 1 2 93 下一页 到第
使用帮助 返回顶部