期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进CWD-CNN的配电网内部过电压类型识别方法 被引量:10
1
作者 高伟 郭谋发 许立彬 《电机与控制学报》 EI CSCD 北大核心 2020年第8期131-140,共10页
针对配电网内部过电压类别难以辨识的问题,提出了基于改进CWD-CNN的过电压类型识别方法。采用乔威廉姆斯分布(choi-williams distribution,CWD)对电力系统中常见的7种过电压信号进行时频分解,构造可表达过电压信号时频能量特征的二维矩... 针对配电网内部过电压类别难以辨识的问题,提出了基于改进CWD-CNN的过电压类型识别方法。采用乔威廉姆斯分布(choi-williams distribution,CWD)对电力系统中常见的7种过电压信号进行时频分解,构造可表达过电压信号时频能量特征的二维矩阵,并利用卷积神经网络(convolutional neural network,CNN)进行过电压的分类识别。改进后的CNN卷积核具有长方形尺度,能够高效、迅速地对时频图像进行特征提取。同时,分别从迭代次数、批量样本数、隐层特征图个数以及卷积核尺寸等方面分析其对寻优结果的影响,并确定最佳寻优参数,最后从样本库随机抽取数据进行交叉验证。结果表明,该方法能够有效地对7类过电压信号进行分类识别,并具有较高的识别率,避免了人工提取特征量的局限性和复杂性。 展开更多
关键词 内部过电压 乔威廉姆斯分布 时频能量特征 卷积神经网络 长方形卷积核 参数寻优
下载PDF
基于语义分割技术的任意方向文字识别 被引量:5
2
作者 王涛 江加和 《应用科技》 CAS 2018年第3期55-60,共6页
针对现有文本检测与定位方法只能处理单一方向文本行的缺点,提出了一种基于语义分割方法的用于自然图像中文本检测的新方法。首先通过对现有检测方法以及目前语义分割方法在文本行检测中的局限性分析。然后对加入矩形卷积核的全卷积网... 针对现有文本检测与定位方法只能处理单一方向文本行的缺点,提出了一种基于语义分割方法的用于自然图像中文本检测的新方法。首先通过对现有检测方法以及目前语义分割方法在文本行检测中的局限性分析。然后对加入矩形卷积核的全卷积网络模型进行训练,获得文本行区域的分类图。最后,通过全连接条件随机场(conditional random field,CRF)的高精度分割能力将网络前端输出的文本行区域中的文字给区分出来。该框架用于处理任意方向、语言和字体中的文本。所提出的方法在MSRA-TD500和ICDAR2015两个文本检测数据集上获得良好的分割结果且性能优越。 展开更多
关键词 自然图像 任意文本行 文本检测 语义分割 全卷积网络 矩形卷积核 融合池化层 条件随机场
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部