期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于重构双注意力网络的图文情感分析
1
作者 周乐善 冯锡炜 《计算机技术与发展》 2024年第12期157-164,共8页
在传统的图文跨模态情感分析算法中,由于缺乏对视觉特征空间和通道的关注,往往容易造成局部特征关键信息的丢失,导致在特征融合阶段,不能很好地表示关键信息。因此,该文提出了基于重构双注意力网络的图文情感分析模型(Images-Text Senti... 在传统的图文跨模态情感分析算法中,由于缺乏对视觉特征空间和通道的关注,往往容易造成局部特征关键信息的丢失,导致在特征融合阶段,不能很好地表示关键信息。因此,该文提出了基于重构双注意力网络的图文情感分析模型(Images-Text Sentiment Analysis Based on Reconstructed Dual Attention Networks Fusion, IRDA)。该模型在视觉特征提取中使用ResNet50获取视觉特征,同时引入空间和通道重构卷积模块,对视觉特征空间和通道位置信息进行重构,对不同位置的关键信息进行融合,加强视觉特征提取。在文本特征提取中使用BERT模型获取文本特征表示,并使用双向门控循环单元(Bi-GRU)关注低层次单词之间的上下文联系,进而增强文本语义特征。使用交互注意力机制关注模态间的特征交互,并进行视觉特征与文本特征融合,进而完成情感分类任务。该模型在MVSA多模态数据集上进行实验验证,实验结果表明该模型皆优于当前主流模型,证实了模型的有效性。 展开更多
关键词 深度学习 多模态 交互注意力 BERT 重构单元卷积模块 卷积神经网络 情感分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部