当前风电场规模日益扩大,连锁故障频发。一般风电场配置完善的保护装置,其中自动重合闸系统在永久性故障时使系统电压两次跌落,从而引发相邻风电场连锁脱网,对风电场的安全稳定运行造成巨大威胁。基于这一现象,以双馈风机为例,研究110 ...当前风电场规模日益扩大,连锁故障频发。一般风电场配置完善的保护装置,其中自动重合闸系统在永久性故障时使系统电压两次跌落,从而引发相邻风电场连锁脱网,对风电场的安全稳定运行造成巨大威胁。基于这一现象,以双馈风机为例,研究110 k V的风电场联络线发生故障时,两次故障跌落时刻其相邻风电场定子磁链初值大小不同,分析了自动重合闸重合永久性故障时系统电压两次跌落造成风电场连锁脱网的机理。在此基础上,提出了使用改变重合闸功能配置以及延长重合时间等方法解决这一问题,并仿真验证了两种方法的有效性。展开更多
风电场接入对高压送出线路的重合闸配置具有重要影响。针对送出线路发生故障后风电场的故障特性,分析了风电场对不同重合闸方式、时间定值和检定方式的影响,提出适用于风电送出线路的重合闸方案。以双馈风机为例,结合现场录波数据,研究...风电场接入对高压送出线路的重合闸配置具有重要影响。针对送出线路发生故障后风电场的故障特性,分析了风电场对不同重合闸方式、时间定值和检定方式的影响,提出适用于风电送出线路的重合闸方案。以双馈风机为例,结合现场录波数据,研究了送出线路发生单相故障和相间故障后风电场的故障特征,并仿真验证了故障特征的正确性。在此基础上对比分析了单重方式和三重方式的优缺点,得到了220 k V及以上送出线路应优先采用综合重合闸的结论;分析了单相重合闸及三相重合闸时间定值的整定依据,并且对不同风电场的三相重合闸检定方式进行了研究,提出了一种"持续检母线无压"的新型检定方式,使送出线路发生瞬时性故障时能够在最短时间内重合成功,实现风电场快速并网发电。展开更多
Automatic line reclosing schemes used in an extra-high-voltage power system is an economical and effective means to maintain transient stability. A novel method is proposed in the paper to adaptively optimize the auto...Automatic line reclosing schemes used in an extra-high-voltage power system is an economical and effective means to maintain transient stability. A novel method is proposed in the paper to adaptively optimize the automatic line reclosing time after a transient fault for enhancement of interconnected power system transient stability. Both the study on the transient energy over network and the structure-preserving multi-machines power system model illustrate that the excessive convergence of potential energy on the lines with a certain cutset deteriorate power system stability, and therefore, an optimum line reclosing strategy can be established by minimizing the change in transient potential energy distribution across a cutset lines in the vicinity of the faulty line as an optimization target, and the optimal reclosure time is set to the time of minimum line phase angle difference. Without any pre-determined knowledge, the method is adaptive to various power system operation modes and fault conditions, and easy to implement because only a limited number of data measured at one location on a tie-line linking sub-networks are required. Simulations have been performed with the OMIB(One Machine and Infinite Bus System) and a real inter-connected power system to verify the applicability of the method proposed.展开更多
文摘当前风电场规模日益扩大,连锁故障频发。一般风电场配置完善的保护装置,其中自动重合闸系统在永久性故障时使系统电压两次跌落,从而引发相邻风电场连锁脱网,对风电场的安全稳定运行造成巨大威胁。基于这一现象,以双馈风机为例,研究110 k V的风电场联络线发生故障时,两次故障跌落时刻其相邻风电场定子磁链初值大小不同,分析了自动重合闸重合永久性故障时系统电压两次跌落造成风电场连锁脱网的机理。在此基础上,提出了使用改变重合闸功能配置以及延长重合时间等方法解决这一问题,并仿真验证了两种方法的有效性。
文摘风电场接入对高压送出线路的重合闸配置具有重要影响。针对送出线路发生故障后风电场的故障特性,分析了风电场对不同重合闸方式、时间定值和检定方式的影响,提出适用于风电送出线路的重合闸方案。以双馈风机为例,结合现场录波数据,研究了送出线路发生单相故障和相间故障后风电场的故障特征,并仿真验证了故障特征的正确性。在此基础上对比分析了单重方式和三重方式的优缺点,得到了220 k V及以上送出线路应优先采用综合重合闸的结论;分析了单相重合闸及三相重合闸时间定值的整定依据,并且对不同风电场的三相重合闸检定方式进行了研究,提出了一种"持续检母线无压"的新型检定方式,使送出线路发生瞬时性故障时能够在最短时间内重合成功,实现风电场快速并网发电。
文摘Automatic line reclosing schemes used in an extra-high-voltage power system is an economical and effective means to maintain transient stability. A novel method is proposed in the paper to adaptively optimize the automatic line reclosing time after a transient fault for enhancement of interconnected power system transient stability. Both the study on the transient energy over network and the structure-preserving multi-machines power system model illustrate that the excessive convergence of potential energy on the lines with a certain cutset deteriorate power system stability, and therefore, an optimum line reclosing strategy can be established by minimizing the change in transient potential energy distribution across a cutset lines in the vicinity of the faulty line as an optimization target, and the optimal reclosure time is set to the time of minimum line phase angle difference. Without any pre-determined knowledge, the method is adaptive to various power system operation modes and fault conditions, and easy to implement because only a limited number of data measured at one location on a tie-line linking sub-networks are required. Simulations have been performed with the OMIB(One Machine and Infinite Bus System) and a real inter-connected power system to verify the applicability of the method proposed.