期刊文献+
共找到817篇文章
< 1 2 41 >
每页显示 20 50 100
A review of rechargeable batteries for portable electronic devices 被引量:62
1
作者 Yeru Liang Chen-Zi Zhao +9 位作者 Hong Yuan Yuan Chen Weicai Zhang Jia-Qi Huang Dingshan Yu Yingliang Liu Maria-Magdalena Titirici Yu-Lun Chueh Haijun Yu Qiang Zhang 《InfoMat》 SCIE CAS 2019年第1期6-32,共27页
Portable electronic devices(PEDs)are promising information-exchange platforms for real-time responses.Their performance is becoming more and more sensitive to energy consumption.Rechargeable batteries are the primary ... Portable electronic devices(PEDs)are promising information-exchange platforms for real-time responses.Their performance is becoming more and more sensitive to energy consumption.Rechargeable batteries are the primary energy source of PEDs and hold the key to guarantee their desired performance stability.With the remarkable progress in battery technologies,multifunctional PEDs have constantly been emerging to meet the requests of our daily life conveniently.The ongoing surge in demand for high-performance PEDs inspires the relentless pursuit of even more powerful rechargeable battery systems in turn.In this review,we present how battery technologies contribute to the fast rise of PEDs in the last decades.First,a comprehensive overview of historical advances in PEDs is outlined.Next,four types of representative rechargeable batteries and their impacts on the practical development of PEDs are described comprehensively.The development trends toward a new generation of batteries and the future research focuses are also presented. 展开更多
关键词 electrochemical energy storage information material portable electronic device rechargeable battery
原文传递
Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries 被引量:37
2
作者 Tao Li He Liu +1 位作者 Peng Shi Qiang Zhang 《Rare Metals》 SCIE EI CAS CSCD 2018年第6期449-458,共10页
Owing to their very high theoretical capacity, lithium (Li) metal anodes regain widespread attentions for their promising applications for next-generation high-energy-density Li batteries (e.g., lithium-sulfur batt... Owing to their very high theoretical capacity, lithium (Li) metal anodes regain widespread attentions for their promising applications for next-generation high-energy-density Li batteries (e.g., lithium-sulfur batteries, lithium-oxygen batteries, solid-state lithium metal batter- ies). However, the inherent bottleneck of Li metal anodes, especially the growth of Li dendrites and the related safety concerns, should be well addressed. Owing to their featured micro-/nano-porous structures and intriguing physical properties, nanocarbon materials have been applied as host materials for Li metal anodes. This review summarizes the recent progress in the development of porous nanocarbon materials for safe Li metal anodes. The perspectives regarding the challenges and future development of employing micro-/nano-porous carbon materials in Li metal anodes are also included. 展开更多
关键词 Li metal anode Carbon nanomaterials Composite electrode Solid electrolyte interphase rechargeable batteries Lithiophilic hosts GRAPHENE
原文传递
Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries 被引量:29
3
作者 Xin Shen Xinbing Cheng +5 位作者 Peng Shi Jiaqi Huang Xueqiang Zhang Chong Yan Tao Li Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期29-34,共6页
Lithium (Li) metal with an ultrahigh specific theoretical capacity and the lowest reduction potential is strongly considered as a promising anode for high-energy-density batteries. However, uncontrolled lithium dendri... Lithium (Li) metal with an ultrahigh specific theoretical capacity and the lowest reduction potential is strongly considered as a promising anode for high-energy-density batteries. However, uncontrolled lithium dendrites and infinite volume change during repeated plating/stripping cycles hinder its practical applications immensely. Herein, a house-like Li anode (housed Li) was designed to circumvent the above issues. The house matrix was composed of carbon fiber matrix and affords a stable structure to relieve the volume change. An artificial solid electrolyte layer was formed on composite Li metal, just like the roof of a house, which facilitates uniform Li ions diffusion and serves as a physical barrier against electrolyte corrosion. With the combination of solid electrolyte layer and matrix in the composite Li metal anode, both dendrite growth and volume expansion are remarkably inhibited. The housed Li|LiFePO4 batteries exhibited over 95% capacity retention after 500 cycles at 1.0 C in coin cell and 85% capacity retention after 80 cycles at 0.5 C in pouch cell. The rationally combination of solid electrolyte layer protection and housed framework in one Li metal anode sheds fresh insights on the design principle of a safe and long-lifespan Li metal anode for Li metal batteries. 展开更多
关键词 LITHIUM METAL anode Solid electrolyte LAYER Composite electrode LITHIUM METAL DENDRITES rechargeable BATTERIES
下载PDF
A compact inorganic layer for robust anode protection in lithium-sulfur batteries 被引量:24
4
作者 Yu-Xing Yao Xue-Qiang Zhang +4 位作者 Bo-Quan Li Chong Yan Peng-Yu Chen Jia-Qi Huang Qiang Zhang 《InfoMat》 SCIE CAS 2020年第2期379-388,共10页
Lithium-sulfur(Li-S)batteries are one of the most promising candidates for high energy density rechargeable batteries beyond current Li-ion batteries.However,severe corrosion of Li metal anode and low Coulombic effici... Lithium-sulfur(Li-S)batteries are one of the most promising candidates for high energy density rechargeable batteries beyond current Li-ion batteries.However,severe corrosion of Li metal anode and low Coulombic efficiency(CE)induced by the unremitting shuttle of Li polysulfides immensely hinder the practical applications of Li-S batteries.Herein,a compact inorganic layer(CIL)formed by ex situ reactions between Li anode and ionic liquid emerged as an effective strategy to block Li polysulfides and suppress shuttle effect.A CE of 96.7%was achieved in Li-S batteries with CIL protected Li anode in contrast to 82.4%for bare Li anode while no lithium nitrate was employed.Furthermore,the corrosion of Li during cycling was effectively inhibited.While applied to working batteries,80.6%of the initial capacity after 100 cycles was retained in Li-S batteries with CIL-protected ultrathin(33μm)Li anode compared with 58.5%for bare Li anode,further demonstrating the potential of this strategy for practical applications.This study presents a feasible interfacial regulation strategy to protect Li anode with the presence of Li polysulfides and opens avenues for Li anode protection in Li-S batteries under practical conditions. 展开更多
关键词 electrochemical energy storage lithium metal anode lithium-sulfur batteries rechargeable battery solid electrolyte interphase
原文传递
Roadmap for rechargeable batteries:present and beyond 被引量:15
5
作者 Sen Xin Xu Zhang +40 位作者 Lin Wang Haijun Yu Xin Chang Yu-Ming Zhao Qinghai Meng Pan Xu Chen-Zi Zhao Jiahang Chen Huichao Lu Xirui Kong Jiulin Wang Kai Chen Gang Huang Xinbo Zhang Yu Su Yao Xiao Shu-Lei Chou Shilin Zhang Zaiping Guo Aobing Du Guanglei Cui Gaojing Yang Qing Zhao Liubing Dong Dong Zhou Feiyu Kang Hu Hong Chunyi Zhi Zhizhang Yuan Xianfeng Li Yifei Mo Yizhou Zhu Dongfang Yu Xincheng Lei Jianxiong Zhao Jiayi Wang Dong Su Yu-Guo Guo Qiang Zhang Jun Chen Li-Jun Wan 《Science China Chemistry》 SCIE EI CSCD 2024年第1期13-42,共30页
Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ... Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research. 展开更多
关键词 energy storage rechargeable batteries battery materials ELECTROCHEMISTRY
原文传递
Designing solid-state interfaces on lithium-metal anodes: a review 被引量:16
6
作者 Chen-Zi Zhao Hui Duan +4 位作者 Jia-Qi Huang Juan Zhang Qiang Zhang Yu-Guo Guo Li-Jun Wan 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第10期1286-1299,共14页
Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and ... Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and dendrite challenges of Li-metal anodes are highly influenced by the interface layer on the Li-metal anode because the intrinsic high reactivity of metallic Li results in an inevitable solid-state interface layer between the Li-metal and electrolytes. In this review, we summarize the recent progress on the interfacial chemistry regarding the interactions between electrolytes and ion migration through dynamic interfaces. The critical factors that affect the interface formation for constructing a stable interface with a low resistance are reviewed. Moreover, we review emerging strategies for rationally designing multiple-structured solid-state electrolytes and their interfaces, including the interfacial properties within hybrid electrolytes and the solid electrolyte/electrode interface. Finally, we present scientific issues and perspectives associated with Li-metal anode interfaces toward a practical Li-metal battery. 展开更多
关键词 lithium-metal ANODE SOLID-STATE ELECTROLYTE energy chemistry rechargeable lithium-metal batteries solid electrolyte/electrode interface
原文传递
N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries 被引量:18
7
作者 Zhiyan Chen Qichen Wang +4 位作者 Xiaobin Zhang Yongpeng Lei Wei Hu Yao Luo Yaobing Wang 《Science Bulletin》 SCIE EI CSCD 2018年第9期548-555,共8页
Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a sca... Simple synthesis of multifunctional electrocatalysts with plentiful active sites from earth-abundant materials is especially fascinating. Here, N-doped defective carbon with trace Co (1.5 wt%) was prepared via a scalable one pot solid pyrolysis process. The sample exhibits efficient bifunctional OER/ORR activiW in alkaline, mainly ascribed to the unique micro-mesoporous structure (1-3 nm), high population of graphitic-N doping (up to 49.0%), abundant defects and the encapsulated Co nanoparticles with graphitized carbon. The according rechargeahle liquid Zn-air batteries showed excellent performance (maximum power density of 154.0 mWcm-2: energy density of 773Wh kg -1 at 5 mAcm 2 and charging-discharging cycling stability over 100 cycles). As a proof-of-concept, the flexible, rechargeable all-solid-state Zn-air batteries were constructed, and displayed a maximum power density as high as 45.9 mW cm 2 among the top level of those reported previously. 展开更多
关键词 Defect Oxygen electrocatalysts rechargeable all-solid-state batteries
原文传递
Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries 被引量:13
8
作者 Yipeng Zang Haimin Zhang +5 位作者 Xian Zhang Rongrong Liu Shengwen Liu Guozhong Wang Yunxia Zhang Huijun Zhao 《Nano Research》 SCIE EI CAS CSCD 2016年第7期2123-2137,共15页
Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticl... Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2Og@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCI3 by a simple pyrolysis approach. Fe/Fe203@Fe-N-C obtained at a pyrolysis temperature of 1,000 ℃ (Fe/Fe2OB@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2-g-1. As an electrocatalyst, Fe/Fe203@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, com- parable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2OB@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open drcuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW.cm-2 at a current density of 220 mA-cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW-cm^-2 at a current density of 220 mA.cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries. 展开更多
关键词 N-doped carbon nanodots Fe/Fe2O3@Fe-N-dopedcarbon oxygen reduction reaction oxygen evolution reaction rechargeable zinc-airbattery
原文传递
A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes 被引量:15
9
作者 Funian Mo Hongfei Li +6 位作者 Zengxia Pei Guojin Liang Longtao Ma Qi Yang Donghong Wang Yan Huang Chunyi Zhi 《Science Bulletin》 SCIE EI CAS CSCD 2018年第16期1077-1086,共10页
Thermal runaway has been a long-standing safety issue impeding the development of high-energy- density batteries. Physical safety designs such as employing circuit-breakers and fuses to batteries are limited by small ... Thermal runaway has been a long-standing safety issue impeding the development of high-energy- density batteries. Physical safety designs such as employing circuit-breakers and fuses to batteries are limited by small operating voltage windows and no resumption of original working condition when it is cooled down. Here we report a smart thermoresponsive polymer electrolyte that can be incorporated inside batteries to prevent thermal runaway via a fast and reversible sol-gel transition, and successfully combine this smart electrolyte with a rechargeable Zn/^-Mn02 battery system. At high temperature, bat- tery operation is inhibited as a result of the increased internal resistance caused by the gelation of liquid electrolyte. After cooling down, the electrolyte is spontaneously reversed to sol state and the electro- chemical performance of the battery is restored. More importantly, sol-gel transition enables the smart battery to experience different charge-discharge rates under various temperature levels, providing a smart and active strategy to achieve dynamic and reversible self-protection. 展开更多
关键词 rechargeable zinc ion battery Sol-gel electrolyte Reversible transition GELATION THERMORESPONSIVE
原文传递
A review of solid-state lithium metal batteries through in-situ solidification 被引量:11
10
作者 Pan Xu Zong-Yao Shuang +12 位作者 Chen-Zi Zhao Xue Li Li-Zhen Fan Aibing Chen Haoting Chen Elena Kuzmina Elena Karaseva Vladimir Kolosnitsyn Xiaoyuan Zeng Peng Dong Yingjie Zhang Mingpei Wang Qiang Zhang 《Science China Chemistry》 SCIE EI CSCD 2024年第1期67-86,共20页
High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realiz... High-energy-density lithium metal batteries are the next-generation battery systems of choice,and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices.Unfortunately,the inherent intractable problems of poor solid-solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications.The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase,including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes,and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes.This review firstly elaborates the history of in-situ solidification for solid-state batteries,and then focuses on the synthetic methods of solidified electrolytes.Furthermore,the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized,and the importance of in-situ solidification technology in enhancing safety is emphasized.Finally,prospects,emerging challenges,and practical applications of in-situ solidification are envisioned. 展开更多
关键词 in-situ solidification polymer electrolyte artificial solid electrolyte interphase rechargeable lithium metal batteries dendrite-free lithium metal anode
原文传递
Recent advances in energy storage mechanism of aqueous zinc-ion batteries 被引量:15
11
作者 Duo Chen Mengjie Lu +2 位作者 Dong Cai Hang Yang Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期712-726,共15页
Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the com... Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review. 展开更多
关键词 Zinc-ion batteries Energy storage mechanism rechargeable aqueous battery Zn-MnO_(2)battery Electrolytic battery
下载PDF
Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries 被引量:14
12
作者 Kai-Chao Pu Xin Zhang +5 位作者 Xiao-Lei Qu Jian-Jiang Hu Hai-Wen Li Ming-Xia Gao Hong-Ge Pan Yong-Feng Liu 《Rare Metals》 SCIE EI CAS CSCD 2020年第6期616-635,共20页
Lithium metal has been regarded as one of the most promising anode materials for high-energy-density batteries due to its extremely high theoretical gravimetric capacity of 3860 mAh·g^-1 along with its low electr... Lithium metal has been regarded as one of the most promising anode materials for high-energy-density batteries due to its extremely high theoretical gravimetric capacity of 3860 mAh·g^-1 along with its low electrochemical potential of-3.04 V.Unfortunately,uncontrollable Li dendrite growth and repetitive destruction/formation of the solid electrolyte interphase layer lead to poor safety and low Coulombic efficiencies(CEs)for long-term utilization,which largely restricts the practical applications of lithium metal anode.In this review,we comprehensively summarized important progresses achieved to date in suppressing Li dendrite growth.Strategies for protection of Li metal anodes include designing porous structured hosts,fabricating artificial solid electrolyte interface(SEI)layers,introducing electrolyte additives,using solid-state electrolytes and applying external fields.The protection of Li metal anodes can be achieved by regulating the stripping and deposition behaviours of Li ions.Finally,the challenges remaining for lithium metal battery systems and future perspectives for Li metal anodes in practical applications are outlined,which are expected to shed light on future research in this field. 展开更多
关键词 rechargeable batteries Anode materials Lithium metal Dendrite growth Coulombic efficiency
原文传递
Energy storage materials derived from Prussian blue analogues 被引量:11
13
作者 Feng Ma Qing Li +2 位作者 Tanyuan Wang Hanguang Zhang Gang Wu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第5期358-368,共11页
Prussian blue analogues(PBAs) with open frameworks have drawn much attention in energy storage fields due to their tridimensional ionic diffusion path, easy preparation, and low cost. This review summarizes the recent... Prussian blue analogues(PBAs) with open frameworks have drawn much attention in energy storage fields due to their tridimensional ionic diffusion path, easy preparation, and low cost. This review summarizes the recent progress of using PBAs and their derivatives as energy storage materials in alkali ions,multi-valent ions, and metal-air batteries. The key factors to improve the electrochemical performance of PBAs as cathode materials in rechargeable batteries were firstly discussed. Several approaches for performance enhancement such as controlling the amounts of vacancies and coordinated water, optimizing morphologies, and depositing carbon coating are described in details. Then, we highlighted the significance of their diverse architectures and morphologies in anode materials for lithium/sodium ion batteries. Finally, the applications of Prussian blue derivatives as catalysts in metal-air batteries are also reviewed, providing insights into the origin of favorable morphologies and structures of catalyst for the optimal performance. 展开更多
关键词 Prussian blue analogues Energy storage rechargeable battery Open frameworks Cathode materials Anode materials CATALYSTS
原文传递
Spent rechargeable lithium batteries in e-waste: composition and its implications 被引量:11
14
作者 Xianlai ZENG Jinhui LI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第5期792-796,共5页
The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be... The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be handled properly. Identification of spent RLBs can supply fundamental information for spent RLBs recycling. This study aimed to determine the differences of physical components and chemical compositions among various spent RLBs. All the samplings of RLBs were rigorously dismantled and measured by an inductive coupled plasma atomic emission spectrometer. The results indicate that the average of total weight of the separator, the anode and the cathode accounted for over 60% of all the RLBs. The weight ratio of valuable metals ranged from 26% to 76%, and approximately 20% of total weight was Cu and Al. Moreover, no significant differences were found among different manufacturers, applications, and electrolyte types. And regarding portable electronic devices, there is also no significant difference in the Co-Li concentration ratios in the leaching liquid of RLBs. 展开更多
关键词 rechargeable lithium batteries E-WASTE physical components difference analysis RECYCLING
原文传递
In Situ Coupling Strategy for Anchoring Monodisperse Co_9S_8 Nanoparticles on S and N Dual?Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery 被引量:11
15
作者 Qi Shao Jiaqi Liu +4 位作者 Qiong Wu Qiang Li Heng?guo Wang Yanhui Li Qian Duan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期64-77,共14页
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt... An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications. 展开更多
关键词 In situ COUPLING strategy Porphyrin derivate DOPED GRAPHENE Metal sulfide BIFUNCTIONAL ELECTROCATALYST rechargeable Zn–air battery
下载PDF
Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior 被引量:13
16
作者 Tao Li Peng Shi +3 位作者 Rui Zhang He Liu Xin-Bing Cheng Qiang Zhang 《Nano Research》 SCIE EI CAS CSCD 2019年第9期2224-2229,共6页
Thin artificial solid electrolyte coatings are effective to enhance the electrochemical performances and safety issues of lithium (Li) metal anode.However,massive and efficient fabrication of artificial protection lay... Thin artificial solid electrolyte coatings are effective to enhance the electrochemical performances and safety issues of lithium (Li) metal anode.However,massive and efficient fabrication of artificial protection layers on Li metal anode surface remains challenging.Herein,we describe a sandwiched Li metal anode fabricated through a continuous roll to roll calendering method to implant a thin and large-area carbon layer on Li metal anode surface at room temperature.Specifically,a carbon layer (~ 3 μm in thickness) can be entirely grafted from Cu substrate to 50 pm Li belt surface due to the stickiness of metallic Li.The carbon layer not only plays a critical role in providing rich nucleation sites for Li plating,but more importantly diminishes the metallurgical nonuniformity effects (slip lines) on stripping.Therefore,even Li plating/stripping morphologies are achieved and the as-obtained sandwiched Li/C composite anodes exhibit improved cycling stability both in Li | LiFePO4 and Li | S coin cells and pouch cells.This continuous roll to roll calendering strategy opens a new avenue for grafting various thin artificial protection layers on Li metal surface for safe rechargeable batteries. 展开更多
关键词 LITHIUM metal anodes artificial solid electrolyte in terphases carb on nano materials Li strippi ng/plating rechargeable batteries
原文传递
Progress in aqueous rechargeable batteries 被引量:10
17
作者 Jilei Liu Chaohe Xu +2 位作者 Zhen Chen Shibing Ni ZeXiang Shen 《Green Energy & Environment》 SCIE 2018年第1期20-41,共22页
Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-met... Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-metal ion(Zn^(2+),Mg^(2+), Ca^(2+), Al^(3+)) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs. 展开更多
关键词 Aqueous rechargeable batteries HYBRID Fundamental basics CHALLENGES
下载PDF
Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon(M=Fe,Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc-Air Batteries 被引量:12
18
作者 Kai Chen Seonghee Kim +5 位作者 Minyeong Je Heechae Choi Zhicong Shi Nikola Vladimir Kwang Ho Kim Oi Lun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期76-95,共20页
As bifunctional oxygen evolution/reduction electrocatalysts,transition-metal-based single-atom-doped nitrogen-carbon(NC)matrices are promising successors of the corresponding noblemetal-based catalysts,offering the ad... As bifunctional oxygen evolution/reduction electrocatalysts,transition-metal-based single-atom-doped nitrogen-carbon(NC)matrices are promising successors of the corresponding noblemetal-based catalysts,offering the advantages of ultrahigh atom utilization effciency and surface active energy.However,the fabrication of such matrices(e.g.,well-dispersed single-atom-doped M-N4/NCs)often requires numerous steps and tedious processes.Herein,ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline.When combining with the dispersion effect of ultrasonic waves,we successfully fabricated uniform single-atom M-N4(M=Fe,Co)carbon catalysts with a production rate as high as 10 mg min-1.The Co-N4/NC presented a bifunctional potential drop ofΔE=0.79 V,outperforming the benchmark Pt/C-Ru/C catalyst(ΔE=0.88 V)at the same catalyst loading.Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption-desorption mechanisms.In a practical Zn-air battery test,the air electrode coated with Co-N4/NC exhibited a specific capacity(762.8 mAh g(-1))and power density(101.62 mW cm^(-2)),exceeding those of Pt/C-Ru/C(700.8 mAh g^(-1) and 89.16 mW cm^(-2),respectively)at the same catalyst loading.Moreover,for Co-N4/NC,the potential difference increased from 1.16 to 1.47 V after 100 charge-discharge cycles.The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal-air batteries. 展开更多
关键词 Single-atom-doped M-N4/NC catalyst Plasma engineering ORR/OER bifunctional activity DFT calculation rechargeable Zn-air battery
下载PDF
Porous LiFePO_(4)/NiP Composite Nanospheres as the Cathode Materials in Rechargeable Lithium Ion Batteries 被引量:12
19
作者 Chunsheng Li Shaoyan Zhang +2 位作者 Fangyi Cheng Weiqiang Ji Jun Chen 《Nano Research》 SCIE EI CSCD 2008年第3期242-248,共7页
We report the synthesis of porous LiFePO4/NiP composite nanospheres and their application in rechargeable lithium-ion batteries.A simple one-step spraying technique was developed to prepare LiFePO_(4)/NiP composite na... We report the synthesis of porous LiFePO4/NiP composite nanospheres and their application in rechargeable lithium-ion batteries.A simple one-step spraying technique was developed to prepare LiFePO_(4)/NiP composite nanospheres with an electrical conductivity 10^(3)-10^(4) times that of bulk particles of LiFePO_(4).Electrochemical measurements show that LiFePO_(4) nanospheres with a uniform loading of 0.86 wt%1.50 wt%NiP exhibit high discharge capacity,good cycling reversibility,and low apparent activation energies.The superior electrode performance of the as-prepared composite nanospheres results from the greatly enhanced electrical conductivity and porous structure of the materials. 展开更多
关键词 NANOSPHERES LiFePO_(4)/NiP SPRAYING electrical conductivity rechargeable lithium-ion batteries
原文传递
Zn-air batteries for electric vehicles 被引量:5
20
作者 Nai-Qi Meng Yu-Xin Fan Jing-Sheng Cai 《Tungsten》 EI CSCD 2024年第1期164-173,共10页
The increasingly serious environmental challenges have gradually aroused people's interest in electric vehicles.Over the last decade,governments and automakers have collaborated on the manufacturing of electric ve... The increasingly serious environmental challenges have gradually aroused people's interest in electric vehicles.Over the last decade,governments and automakers have collaborated on the manufacturing of electric vehicles with high performance.Cutting-edge battery technologies are pivotal for the performance of electric vehicles.Zn-air batteries are considered as potential power batteries for electric vehicles due to their high capacity.Zn-air battery researches can be classified into three categories:primary batteries,mechanically rechargeable batteries,and chemically rechargeable batteries.The majority of current studies aim at developing and improving chemically rechargeable and mechanically rechargeable Zn-air batteries.Researchers have tried to use catalytic materials design and device design for Zn-air batteries to make it possible for their applications in electric vehicles.This review will highlight the state-of-the-art in primary batteries,mechanically rechargeable batteries,and chemically rechargeable batteries,revealing the prospects of Zn-air batteries for electric vehicles. 展开更多
关键词 Energy storage Electric vehicles Bifunctional oxygen catalysts Mechanically rechargeable Zn-air batteries Chemically rechargeable Zn-air batteries
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部