This paper presents a theoretical comparison of a single carrier system and a multi-carrier system through an analysis of the achievable rate under frequency selective fading with channel state information at the rece...This paper presents a theoretical comparison of a single carrier system and a multi-carrier system through an analysis of the achievable rate under frequency selective fading with channel state information at the receiver. A scheme was designed to compare the achievable rates of a single carrier system and an Or- thogonal Frequency Division Multiplexing (OFDM) system. A thorough theoretical analysis of the two-path channel was conducted, and simulations were also used to analyze practical stochastic channels. Analysis and simulation results show that the achievable rates of the two approaches are comparable when the channel is flat fading. However, when the channel is frequency selective fading, the single carrier system outperforms the OFDM system. The achievable rate of the OFDM system is about 10% lower than that of the single carrier system at higher SNRs.展开更多
This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the rec...This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the received continuous time signal using filter banks is an essential stage in the front-end part, where the Fast Haar Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow-fading channels shows that it is optimal for certain modulation schemes. By comparison with literature, it is shown that over such channels our receiver can achieve optimal performance for Time-Orthogonal modulation. Computed and Monte-Carlo simulated performance results over fast time-varying Rayleigh fading channels show that with Minimum Shift Keying (MSK), our receiver using four basis functions (filters) lowers the error floor by more than one order of magnitude with respect to other techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can achieve the same performance as Time-Orthogonal modulation for the slow-fading case, but suffers some degradation over fast-fading channels where it exhibits an error floor. Compared to MSK, however, Orthogonal FSK provides better performance.展开更多
基金Supported by the National Key Technology Research and Devel-opment Program (No. 2009ZX03006-007-02)the National Natural Science Foundation of China (Nos. 60972019, 61021001,and 60928001)
文摘This paper presents a theoretical comparison of a single carrier system and a multi-carrier system through an analysis of the achievable rate under frequency selective fading with channel state information at the receiver. A scheme was designed to compare the achievable rates of a single carrier system and an Or- thogonal Frequency Division Multiplexing (OFDM) system. A thorough theoretical analysis of the two-path channel was conducted, and simulations were also used to analyze practical stochastic channels. Analysis and simulation results show that the achievable rates of the two approaches are comparable when the channel is flat fading. However, when the channel is frequency selective fading, the single carrier system outperforms the OFDM system. The achievable rate of the OFDM system is about 10% lower than that of the single carrier system at higher SNRs.
文摘This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the received continuous time signal using filter banks is an essential stage in the front-end part, where the Fast Haar Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow-fading channels shows that it is optimal for certain modulation schemes. By comparison with literature, it is shown that over such channels our receiver can achieve optimal performance for Time-Orthogonal modulation. Computed and Monte-Carlo simulated performance results over fast time-varying Rayleigh fading channels show that with Minimum Shift Keying (MSK), our receiver using four basis functions (filters) lowers the error floor by more than one order of magnitude with respect to other techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can achieve the same performance as Time-Orthogonal modulation for the slow-fading case, but suffers some degradation over fast-fading channels where it exhibits an error floor. Compared to MSK, however, Orthogonal FSK provides better performance.