期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MRMR和SSGMM联合分类模型的煤泥浮选系统药况图像识别 被引量:6
1
作者 曹文艳 王然风 +2 位作者 樊民强 付翔 王宇龙 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第12期2045-2058,共14页
为解决煤泥浮选过程依靠工人肉眼识别泡沫特征来调节药剂用量,造成药剂浪费,产品质量不合格的问题,提出一种MRMR和SSGMM联合分类模型的药况图像识别方法.针对泡沫图像的形态、纹理、颜色特征与泡沫类别具有不同程度的相关性.将精煤灰分... 为解决煤泥浮选过程依靠工人肉眼识别泡沫特征来调节药剂用量,造成药剂浪费,产品质量不合格的问题,提出一种MRMR和SSGMM联合分类模型的药况图像识别方法.针对泡沫图像的形态、纹理、颜色特征与泡沫类别具有不同程度的相关性.将精煤灰分作为泡沫的类别信息,利用最大相关最小冗余(MRMR)算法筛选最优特征;针对传统的高斯混合模型(GMM)在聚类时,存在结果需人为判断实现分类的问题,通过引入少量已知加药状况下的泡沫图像特征样本对其改进,构建半监督高斯混合模型(SSGMM)泡沫图像聚类器.将优选的且具有少量先验标签信息的多维泡沫图像特征融合到SSGMM聚类模型中,利用少量的标记样本引导聚类,并将其标签信息映射给聚类结果实现自动分类.实验表明,这种联合分类模型提高了泡沫识别的准确性,为药剂用量的准确控制与精煤产品质量提供了关键技术支持. 展开更多
关键词 煤泥浮选泡沫 加药状况 机器视觉 图像特征提取和选择 半监督学习 联合分类模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部