Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4 -based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrysta...Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4 -based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrystalline Fe3O4 films and attributed to the insulating grain boundaries. The pinning effect of the moments at the grain boundaries leads to a significant exchange bias. Frozen interfacial/surface moments induce weak saturation of the high-field magnetoresistance. The films show a moment rotation related butterfly-shaped magnetoresistance. It was found that in the films, natural growth defects, antiphase boundaries, and magnetocrystalline anisotropy play important roles in high-order anisotropic magnetoresistance. Spin injection from Fe3O4 films to semiconductive Si and ZnO was measured to be 45% and 28.5%, respectively. The positive magnetoresistance in the Fe3O4 -based heterostructures is considered to be caused by a shift of the Fe3O4 e g ↑ band near the interface. Enhanced magnetization was observed in Fe3O4 /BiFeO 3 heterostructures experimentally and further proved by first principle calculations. The enhanced magnetization can be explained by spin moments of the thin BiFeO 3 layer substantially reversing into a ferromagnetic arrangement under a strong coupling that is principally induced by electronic orbital reconstruction at the interface.展开更多
The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea...The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and wa展开更多
A microRNA expression screen was performed analyzing 157 different microRNAs in laser-microdissected tissues from benign melanocytic nevi (n = 10) and primary malignant melanomas (n = 10), using quantitative real-...A microRNA expression screen was performed analyzing 157 different microRNAs in laser-microdissected tissues from benign melanocytic nevi (n = 10) and primary malignant melanomas (n = 10), using quantitative real-time PCR. Differential expression was found for 72 microRNAs. Members of the let-7 family of microRNAs were significantly downregulated in primary melanomas as compared with benign nevi, suggestive for a possible role of these molecules as tumor suppressors in malignant melanoma. Interestingly, similar findings had been described for lung and colon cancer. Overexpression of let-7b in melanoma cells in vitro downregulated the expression of cyclins D1, D3, and A, and cyclin-dependent kinase (Cdk) 4, all of which had been described to play a role in melanoma development. The effect oflet-7b on protein expression was due to targeting of 3'-untranslated regions (3'UTRs) of individual mRNAs, as exemplified by reporter gene analyses for cyclin D1. In line with its downmodulating effects on cell cycle regulators, let-7b inhibited cell cycle progression and anchorage-independent growth of melanoma cells. Taken together, these findings not only point to new regulatory mechanisms of early melanoma development, but also may open avenues for future targeted therapies of this tumor.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 51272174)the Natural Science Foundation of Tianjin City (Grant No. 12JCYBJC11100)
文摘Half metallic polycrystalline, epitaxial Fe3O4 films and Fe3O4 -based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering. Large tunneling magnetoresistance was found in the polycrystalline Fe3O4 films and attributed to the insulating grain boundaries. The pinning effect of the moments at the grain boundaries leads to a significant exchange bias. Frozen interfacial/surface moments induce weak saturation of the high-field magnetoresistance. The films show a moment rotation related butterfly-shaped magnetoresistance. It was found that in the films, natural growth defects, antiphase boundaries, and magnetocrystalline anisotropy play important roles in high-order anisotropic magnetoresistance. Spin injection from Fe3O4 films to semiconductive Si and ZnO was measured to be 45% and 28.5%, respectively. The positive magnetoresistance in the Fe3O4 -based heterostructures is considered to be caused by a shift of the Fe3O4 e g ↑ band near the interface. Enhanced magnetization was observed in Fe3O4 /BiFeO 3 heterostructures experimentally and further proved by first principle calculations. The enhanced magnetization can be explained by spin moments of the thin BiFeO 3 layer substantially reversing into a ferromagnetic arrangement under a strong coupling that is principally induced by electronic orbital reconstruction at the interface.
基金The"Twelfth Five-Year Plan"of the National Science and Technology Support Project(Grant No.2012BAK10B01)the National Natural Science Foundation of China(Grant Nos.41372321 and 41502305)China Geological Survey Projects(Grant No.121201009000150018)
文摘The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and wa
文摘A microRNA expression screen was performed analyzing 157 different microRNAs in laser-microdissected tissues from benign melanocytic nevi (n = 10) and primary malignant melanomas (n = 10), using quantitative real-time PCR. Differential expression was found for 72 microRNAs. Members of the let-7 family of microRNAs were significantly downregulated in primary melanomas as compared with benign nevi, suggestive for a possible role of these molecules as tumor suppressors in malignant melanoma. Interestingly, similar findings had been described for lung and colon cancer. Overexpression of let-7b in melanoma cells in vitro downregulated the expression of cyclins D1, D3, and A, and cyclin-dependent kinase (Cdk) 4, all of which had been described to play a role in melanoma development. The effect oflet-7b on protein expression was due to targeting of 3'-untranslated regions (3'UTRs) of individual mRNAs, as exemplified by reporter gene analyses for cyclin D1. In line with its downmodulating effects on cell cycle regulators, let-7b inhibited cell cycle progression and anchorage-independent growth of melanoma cells. Taken together, these findings not only point to new regulatory mechanisms of early melanoma development, but also may open avenues for future targeted therapies of this tumor.