A cost-efficient and stable oxygen evolution electrocatalyst is essential for improving energy storage and conversion efficiencies. Herein, 2D nanosheets with randomly cross-linked CoNi layered double hydroxide (LDH...A cost-efficient and stable oxygen evolution electrocatalyst is essential for improving energy storage and conversion efficiencies. Herein, 2D nanosheets with randomly cross-linked CoNi layered double hydroxide (LDH) and small CoO nanocrystals were designed and synthesized via in situ reduction and interface- directed assembly in air. The formation of CoNi LDH/CoO nanosheets was attributed to the strong extrusion of hydrated metal-oxide clusters driven by the interfacial tension. The obtained loose and porous nanosheets exhibited low crystallinity due to the presence of numerous defects. Owing to the orbital hybridization between metal 3d and O 2p orbitals, and electron transfer between metal atoms through Ni-O-Co, a number of Co and Ni atoms in the CoNi LDH present a high +3 valency. These unique characteristics result in a high density of oxygen evolution reaction (OER) active sites, improving the affinity between OH- and catalyst, and resulting in a large accessible surface area and permeable channels for ion adsorption and transport. Therefore, the resulting nanosheets exhibited high catalytic activity towards the OER. The CoNi LDH/CoO featured a low onset potential of 1.48 V in alkaline medium, and required an overpotential of only 300 mV at a current density of 10 mA.cm-2, while displaying good stability in accelerated durability tests.展开更多
The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are ...The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed.展开更多
Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulatio...Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulation of water dissociation, hydrogen recombination, and hydroxyl desorption. Herein, we develop a multi-interface engineering strategy to make an elaborate balance for the alkaline hydrogen evolution reaction (HER) kinetics. The graphene cross-linked three-phase nickel sulfide (NiS-NiS_(2)-Ni_(3)S_(4)) polymorph foam (G-NNNF) was constructed through hydrothermal sulfidation of graphene wrapped nickel foam as a three-dimensional (3D) scaffold template. The G-NNNF exhibits superior catalytic activity toward HER in alkaline electrolyte, which only requires an overpotential of 68 mV to drive 10 mA·cm^(−2) and is better than most of the recently reported metal sulfides catalysts. Density functional theory (DFT) calculations verify the interfaces between nickel sulfides (NiS/NiS_(2)-Ni_(3)S_(4)) and cross-linked graphene can endow the electrocatalyst with preferable hydrogen adsorption as well as metallic nature. In addition, the electron transfer from Ni_(3)S_(4)/NiS_(2) to NiS results in the electron accumulation on NiS and the hole accumulation on Ni_(3)S_(4)/NiS_(2), respectively. The electron accumulation on NiS favors the optimization of the H* adsorption, whereas the hole accumulation on Ni_(3)S_(4) is beneficial for the adsorption of H_(2)O. The work about multi-interface collaboration pushes forward the frontier of excellent polymorph catalysts design.展开更多
T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, an...T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices.展开更多
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c...The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR.展开更多
The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p...The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.展开更多
Effects of rare earth element La on the microstructure of Cumatrix diamond tools were researched under the conditions of variousmaterials components and the process parameters in order to improvematerials properties. ...Effects of rare earth element La on the microstructure of Cumatrix diamond tools were researched under the conditions of variousmaterials components and the process parameters in order to improvematerials properties. SEM, XPS and X-ray were used to investigate thefracture section, microstructure and the element valence inmaterials. The Results shown that the combination of rare earthelement La and transition element Ti is advantageous to the bondingstate Between diamond particles and matrix, so it can improve thematerials properties. Suitable sintering temperature is 790 deg. C.展开更多
Developing highly efficient electrochemical catalysts for carbon dioxide reduction reaction(CO_(2)RR)provides a solution to battle global warming issues resulting from ever-increasing carbon footprint due to human act...Developing highly efficient electrochemical catalysts for carbon dioxide reduction reaction(CO_(2)RR)provides a solution to battle global warming issues resulting from ever-increasing carbon footprint due to human activities.Copper(Cu)is known for its efficiency in CO_(2)RR towards value-added hydrocarbons;hence its unique structural properties along with various Cu alloys have been extensively explored in the past decade.Here,we demonstrate a two-step approach to achieve intimate atomic Cu-Ag interfaces on the surface of Cu nanowires,which show greatly improved CO_(2)RR selectivity towards methane(CH4).The specially designed Cu-Ag interfaces showed an impressive maximum Faradaic efficiency(FE)of 72%towards CH4 production at-1.17 V(vs.reversible hydrogen electrode(RHE)).展开更多
Proton exchange membrane water electrolyzer(PEMWE)driven by renewable electricity is a promising technique toward green hydrogen production,but the corrosive environment and high working potential pose severe challeng...Proton exchange membrane water electrolyzer(PEMWE)driven by renewable electricity is a promising technique toward green hydrogen production,but the corrosive environment and high working potential pose severe challenges for developing advanced electrocatalysts for the oxygen evolution reaction(OER).Although Ir-based materials possess relatively balanced activity and stability for the OER,their dissolution behavior cannot be neglected,in particular under high working potentials.In this work,iridium dioxide(IrO_(2))nanoparticles(NPs)were anchored on the surface of exfoliated h-boron nitride(BN)nanosheets(NSs)toward the OER reaction in acid media.Highly active Ir(V)species were stabilized by the epitaxial interface between IrO_(2)and h-BN,and therefore the IrO_(2)/BN delivered stable performance at increased working potentials,while the activity of bare IrO_(2)NPs without h-BN support decreased rapidly.Also,the smaller lattice spacing of h-BN induced compressive strain for IrO_(2),resulting in improved activity.Our results demonstrate the feasibility of stabilizing highly active Ir(V)species for the OER in acid media by constructing robust interface and provide new possibilities toward designing advanced heterostructured electrocatalysts.展开更多
Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloy...Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.展开更多
Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on ...Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.展开更多
Conduction filament formation,redox reaction,and mobile ion migration in solid electrolytes underpin the memristive devices,all of which are partially influenced or fully dominated by the moisture.The moisture-based p...Conduction filament formation,redox reaction,and mobile ion migration in solid electrolytes underpin the memristive devices,all of which are partially influenced or fully dominated by the moisture.The moisture-based physical-chemistry mechanism provides an electric tunable method to create enough dissociate conductance states for neuromorphic computing,but overconcentration moisture will corrode electrode and then causes device invalidation.This perspective goal is that surveys the moisture-dependency of dynamic at interfaces or/and switching function layer,clarifies the bottlenecks that the memristive device facing in terms of water molecule-related reaction,and gives the possible solutions.展开更多
基金We gratefully acknowledge the support of this research by the Key Program Projects of the National Natural Science Foundation of China (No. 21031001), the National Natural Science Foundation of China (Nos. 21371053 and 21573062), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Program for Innovative Research Team in University (No. IRT-1237), Application Technology Research and Development Projects in Harbin (No. 2013AE4BW051), International Science & Technology Cooperation Program of China (No. 2014DFR41110), and the Foundation of Heilongjiang Province of China (No. QC2013C009).
文摘A cost-efficient and stable oxygen evolution electrocatalyst is essential for improving energy storage and conversion efficiencies. Herein, 2D nanosheets with randomly cross-linked CoNi layered double hydroxide (LDH) and small CoO nanocrystals were designed and synthesized via in situ reduction and interface- directed assembly in air. The formation of CoNi LDH/CoO nanosheets was attributed to the strong extrusion of hydrated metal-oxide clusters driven by the interfacial tension. The obtained loose and porous nanosheets exhibited low crystallinity due to the presence of numerous defects. Owing to the orbital hybridization between metal 3d and O 2p orbitals, and electron transfer between metal atoms through Ni-O-Co, a number of Co and Ni atoms in the CoNi LDH present a high +3 valency. These unique characteristics result in a high density of oxygen evolution reaction (OER) active sites, improving the affinity between OH- and catalyst, and resulting in a large accessible surface area and permeable channels for ion adsorption and transport. Therefore, the resulting nanosheets exhibited high catalytic activity towards the OER. The CoNi LDH/CoO featured a low onset potential of 1.48 V in alkaline medium, and required an overpotential of only 300 mV at a current density of 10 mA.cm-2, while displaying good stability in accelerated durability tests.
文摘The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0405400)Shandong Provincial Natural Science Foundation(Nos.ZR2019BB025 and ZR2018ZC0842)+2 种基金the Project of“20 items of University”of Jinan(No.2018GXRC031)the National Natural Science Foundation of China(Nos.21976014,U1930402 and 22071172)the generous computer time from TianHe2-JK Supercomputer Center.
文摘Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulation of water dissociation, hydrogen recombination, and hydroxyl desorption. Herein, we develop a multi-interface engineering strategy to make an elaborate balance for the alkaline hydrogen evolution reaction (HER) kinetics. The graphene cross-linked three-phase nickel sulfide (NiS-NiS_(2)-Ni_(3)S_(4)) polymorph foam (G-NNNF) was constructed through hydrothermal sulfidation of graphene wrapped nickel foam as a three-dimensional (3D) scaffold template. The G-NNNF exhibits superior catalytic activity toward HER in alkaline electrolyte, which only requires an overpotential of 68 mV to drive 10 mA·cm^(−2) and is better than most of the recently reported metal sulfides catalysts. Density functional theory (DFT) calculations verify the interfaces between nickel sulfides (NiS/NiS_(2)-Ni_(3)S_(4)) and cross-linked graphene can endow the electrocatalyst with preferable hydrogen adsorption as well as metallic nature. In addition, the electron transfer from Ni_(3)S_(4)/NiS_(2) to NiS results in the electron accumulation on NiS and the hole accumulation on Ni_(3)S_(4)/NiS_(2), respectively. The electron accumulation on NiS favors the optimization of the H* adsorption, whereas the hole accumulation on Ni_(3)S_(4) is beneficial for the adsorption of H_(2)O. The work about multi-interface collaboration pushes forward the frontier of excellent polymorph catalysts design.
文摘T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices.
基金supported by the National Natural Science Foundation of China (NSFC)(22075201)the National Key Research and Development Program of China (2022YFB4101800)。
文摘The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR.
基金supported by the National Natural Science Foundation of China(Nos.52174277 and 51874077)the Fundamental Funds for the Central Universities,China(No.N2225032)+1 种基金the China Postdoctoral Science Foundation(No.2022M720683)the Postdoctoral Fund of Northeastern University,China。
文摘The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.
文摘Effects of rare earth element La on the microstructure of Cumatrix diamond tools were researched under the conditions of variousmaterials components and the process parameters in order to improvematerials properties. SEM, XPS and X-ray were used to investigate thefracture section, microstructure and the element valence inmaterials. The Results shown that the combination of rare earthelement La and transition element Ti is advantageous to the bondingstate Between diamond particles and matrix, so it can improve thematerials properties. Suitable sintering temperature is 790 deg. C.
基金TEM work was conducted using the facilities in the electron imaging center of California NanoSystems Institute at the University of California Los Angles and the Irvine Materials Research Institute at the University of California Irvine.C.C.,J.C.and Y.H.acknowledge support by the Office of Naval Research(ONR)(No.N000141712608)C.S.L.and H.M.L.acknowledge support by a National Research Foundation(NRF)of Korea grant funded by the Korean Government(Nos.NRF-2017 R1E1A1A03071049 and NRF-2020R1A5A6017701).
文摘Developing highly efficient electrochemical catalysts for carbon dioxide reduction reaction(CO_(2)RR)provides a solution to battle global warming issues resulting from ever-increasing carbon footprint due to human activities.Copper(Cu)is known for its efficiency in CO_(2)RR towards value-added hydrocarbons;hence its unique structural properties along with various Cu alloys have been extensively explored in the past decade.Here,we demonstrate a two-step approach to achieve intimate atomic Cu-Ag interfaces on the surface of Cu nanowires,which show greatly improved CO_(2)RR selectivity towards methane(CH4).The specially designed Cu-Ag interfaces showed an impressive maximum Faradaic efficiency(FE)of 72%towards CH4 production at-1.17 V(vs.reversible hydrogen electrode(RHE)).
基金supported by the Natural Science Foundation of Zhejiang Province(No.LZ22B030006)the National Natural Science Foundation of China(No.52171224)+2 种基金G.Q.Z.acknowledges the financial support from the China Postdoctoral Science Foundation(Nos.2021M690132 and 2021T140588)the Office of China Postdoc Council(No.YJ20200160)Natural Science Foundation of Zhejiang Province(No.LQ22B030005).
文摘Proton exchange membrane water electrolyzer(PEMWE)driven by renewable electricity is a promising technique toward green hydrogen production,but the corrosive environment and high working potential pose severe challenges for developing advanced electrocatalysts for the oxygen evolution reaction(OER).Although Ir-based materials possess relatively balanced activity and stability for the OER,their dissolution behavior cannot be neglected,in particular under high working potentials.In this work,iridium dioxide(IrO_(2))nanoparticles(NPs)were anchored on the surface of exfoliated h-boron nitride(BN)nanosheets(NSs)toward the OER reaction in acid media.Highly active Ir(V)species were stabilized by the epitaxial interface between IrO_(2)and h-BN,and therefore the IrO_(2)/BN delivered stable performance at increased working potentials,while the activity of bare IrO_(2)NPs without h-BN support decreased rapidly.Also,the smaller lattice spacing of h-BN induced compressive strain for IrO_(2),resulting in improved activity.Our results demonstrate the feasibility of stabilizing highly active Ir(V)species for the OER in acid media by constructing robust interface and provide new possibilities toward designing advanced heterostructured electrocatalysts.
基金supported by the National Natural Science Foundation of China(5197219862133007)the Taishan Scholars Program of Shandong Province(tsqn201812002,ts20190908)+1 种基金the Shenzhen Fundamental Research Program(JCYJ20190807093405503)The Natural Science Foundation of Shandong Province(No.ZR2020JQ19)。
文摘Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.
基金The authors gratefully acknowledge financial support by the National Natural Science Foundation of China-Xinjiang Joint Fund(U2003124)the National Natural Science Foundation of China(No.51974001)the University Outstanding Young Talents Funding Program(No.gxyq2019016).
文摘Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.
文摘Conduction filament formation,redox reaction,and mobile ion migration in solid electrolytes underpin the memristive devices,all of which are partially influenced or fully dominated by the moisture.The moisture-based physical-chemistry mechanism provides an electric tunable method to create enough dissociate conductance states for neuromorphic computing,but overconcentration moisture will corrode electrode and then causes device invalidation.This perspective goal is that surveys the moisture-dependency of dynamic at interfaces or/and switching function layer,clarifies the bottlenecks that the memristive device facing in terms of water molecule-related reaction,and gives the possible solutions.