Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage init...Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage initial sticking probabilities(So).To find the origin of the large experiment-theory discrepancy,we have revisited the dissociative adsorption of HCl on Au(111)with a newly designed molecular beam-surface apparatus.The zero-coverage So derived from Cl-coverage measurements with varying HCl doses agree well with previous ones.However,we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime,which may result in some uncertainties to the fitted So value.This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages.Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare against experimental data with zero coverage in this system,and provide guidance for improving both experiment and theory in this regard.展开更多
Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is pre...Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.展开更多
We report the charge-changing cross sections(σ_(cc))of 24 p-shell nuclides on both hydrogen and carbon at about 900A MeV,of which^(8,9)Li,^(10–12)Be,^(10,14,15)B,^(14,15,17–22)N and^(16)O on hydrogen and^(8,9)Li on...We report the charge-changing cross sections(σ_(cc))of 24 p-shell nuclides on both hydrogen and carbon at about 900A MeV,of which^(8,9)Li,^(10–12)Be,^(10,14,15)B,^(14,15,17–22)N and^(16)O on hydrogen and^(8,9)Li on carbon are for the first time.Benefiting from the data set,we found a new and robust relationship between the scaling factor of the Glauber model calculations and the separation energies of the nuclei of interest on both targets.This allows us to deduce proton radii(R_p)for the first time from the cross sections on hydrogen.Nearly identical R_p values are deduced from both target data for the neutron-rich carbon isotopes;however,the R_p from the hydrogen target is systematically smaller in the neutron-rich nitrogen isotopes.This calls for further experimental and theoretical investigations.展开更多
Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstru...Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.展开更多
The subgrade soil scaling factor (SSSF) shows the basic properties of soil such as stiffness, gravimetry, density, and particle distribution, which are essential for disaster prediction and geotechnical engineering ...The subgrade soil scaling factor (SSSF) shows the basic properties of soil such as stiffness, gravimetry, density, and particle distribution, which are essential for disaster prediction and geotechnical engineering activities. In this paper, methods used for soil properties analysis are firstly summarized, and then a fiber Bragg grating (FBG) sensing technology is introduced. In order to acquire the properties and mechanical characteristics of soil accurately, a vibration-based method is presented, and an experiment for judging the properties of soil is conducted. As for the experiment, an FBG sensor is adhered to the upside of the vibration rod to measure its fundamental frequency. The rod vibrates freely at different-depth level of soil, and the changed data of wavelength from the FBG sensor are carefully collected. The Winkler spring model is used to analyze the relationship between the fundamental frequency and stiffness of soil. The results of this experiment suggest that data collected from FBG sensor can reflect vibration situation clearly and quantitatively. Thus the SSSF value can be calculated from the frequency-stiffness equation. The experimental results are almost identical with the theoretical derivation results. This confirms that the method presented in the paper can determine the SSSF effectively.展开更多
The dynamics of laser-induced chemical reactions of GaAs (100) and InP(100) surfaces with chlorine molecules under UV and visible (355 nm and 560 nm) irradiation are studied using a CW supersonic molecular beam and ti...The dynamics of laser-induced chemical reactions of GaAs (100) and InP(100) surfaces with chlorine molecules under UV and visible (355 nm and 560 nm) irradiation are studied using a CW supersonic molecular beam and time-resolved mass spectrometry. The major reaction products observed in time-resolved mass spectrometric measurements are GaC1, and InCl, (x=1, 2). The dependence of time-of-flight spectra of the desorbed products on laser wavelength and fluence has been investigated. Furthermore, the obvious enhancement of laser-induced gas-surface reactions by increasing the translational energy of incident chlorine molecules is reported for the first time.展开更多
Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs laye...Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.展开更多
Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity ...Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail展开更多
The prototypical reaction of F+HD→DF+H was investigated at collision energies from 3.03 meV to 17.97 meV using a crossed molecular beam apparatus with multichannel Rydberg tagging time-of-flight detection.Significant...The prototypical reaction of F+HD→DF+H was investigated at collision energies from 3.03 meV to 17.97 meV using a crossed molecular beam apparatus with multichannel Rydberg tagging time-of-flight detection.Significant contributions from both the BornOppenheimer(BO)forbidden reaction F^(*)(^(2)P_(1/2))+HD→DF+H and the BO-allowed reaction F(^(2)P_(3/2))+HD→DF+H were observed.In the backward scattering direction,the contribution from the BO-forbidden reaction F^(*)(^(2)P_(1/2))+HD was found to be considerably greater than the BO-allowed reaction F(^(2)P_(3/2))+HD,indicating the non-adiabatic effects play an important role in the dynamics of the title reaction at low collision energies.Collision-energy dependence of differential cross sections(DCSs)in the backward scattering direction was found to be monotonously decreased as the collision energy decreases,which does not support the existence of resonance states in this energy range.DCSs of both BO-allowed and BO-forbidden reactions were measured at seven collision energies from 3.03 meV to 17.97 meV.It is quite unexpected that the angular distribution gradually shifts from backward to sideway as the collision energy decreases from 17.97 meV to 3.03 meV,suggesting some unknown mechanisms may exist at low collision energies.展开更多
基金supported by the National Natural Science Foundation of China(No.22173042,No.21973037,No.22073089,and No.22327801)the In-novation program for Quantum Science and Technolo-gy(No.2021ZD0303304)+2 种基金the Guangdong Science and Technology Program(No.2019ZT08L455 and No.2019JC01X091)the Shenzhen Science and Technology Program(No.ZDSYS2020421111001787)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450101).
文摘Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage initial sticking probabilities(So).To find the origin of the large experiment-theory discrepancy,we have revisited the dissociative adsorption of HCl on Au(111)with a newly designed molecular beam-surface apparatus.The zero-coverage So derived from Cl-coverage measurements with varying HCl doses agree well with previous ones.However,we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime,which may result in some uncertainties to the fitted So value.This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages.Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare against experimental data with zero coverage in this system,and provide guidance for improving both experiment and theory in this regard.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004)the Guangxi Natural Science Foundation(No.2022GXNSFBA035549).
文摘Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.
基金supported by the National Natural Science Foundation of China(12325506,11961141004)the“111 center”(B20065)+1 种基金the NSERC,Canada,the Faculty Research Scheme at IIT(ISM)Dhanbad(FRS(154)/2021–2022/Physics)the support of the Chinese government and Beihang University under the Thousand Talent program。
文摘We report the charge-changing cross sections(σ_(cc))of 24 p-shell nuclides on both hydrogen and carbon at about 900A MeV,of which^(8,9)Li,^(10–12)Be,^(10,14,15)B,^(14,15,17–22)N and^(16)O on hydrogen and^(8,9)Li on carbon are for the first time.Benefiting from the data set,we found a new and robust relationship between the scaling factor of the Glauber model calculations and the separation energies of the nuclei of interest on both targets.This allows us to deduce proton radii(R_p)for the first time from the cross sections on hydrogen.Nearly identical R_p values are deduced from both target data for the neutron-rich carbon isotopes;however,the R_p from the hydrogen target is systematically smaller in the neutron-rich nitrogen isotopes.This calls for further experimental and theoretical investigations.
文摘Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.
文摘The subgrade soil scaling factor (SSSF) shows the basic properties of soil such as stiffness, gravimetry, density, and particle distribution, which are essential for disaster prediction and geotechnical engineering activities. In this paper, methods used for soil properties analysis are firstly summarized, and then a fiber Bragg grating (FBG) sensing technology is introduced. In order to acquire the properties and mechanical characteristics of soil accurately, a vibration-based method is presented, and an experiment for judging the properties of soil is conducted. As for the experiment, an FBG sensor is adhered to the upside of the vibration rod to measure its fundamental frequency. The rod vibrates freely at different-depth level of soil, and the changed data of wavelength from the FBG sensor are carefully collected. The Winkler spring model is used to analyze the relationship between the fundamental frequency and stiffness of soil. The results of this experiment suggest that data collected from FBG sensor can reflect vibration situation clearly and quantitatively. Thus the SSSF value can be calculated from the frequency-stiffness equation. The experimental results are almost identical with the theoretical derivation results. This confirms that the method presented in the paper can determine the SSSF effectively.
文摘The dynamics of laser-induced chemical reactions of GaAs (100) and InP(100) surfaces with chlorine molecules under UV and visible (355 nm and 560 nm) irradiation are studied using a CW supersonic molecular beam and time-resolved mass spectrometry. The major reaction products observed in time-resolved mass spectrometric measurements are GaC1, and InCl, (x=1, 2). The dependence of time-of-flight spectra of the desorbed products on laser wavelength and fluence has been investigated. Furthermore, the obvious enhancement of laser-induced gas-surface reactions by increasing the translational energy of incident chlorine molecules is reported for the first time.
基金supported by the National Natural Science Foundation of China(Nos.12074210,51788104,11790311,and 12141403)the Basic and Applied Basic Research Major Programme of Guangdong Province of China(No.2021B0301030003)Jihua Laboratory(Project No.X210141TL210).
文摘Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.
基金Supported by the International Thermonuclear Experimental Reactor Project of China under Grant No 2013GB114003the National Natural Science Foundation of China under Grant No 11275135
文摘Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail
基金supported by the National Natural Science Foundation of China(No.21822305,No.21688102,No.22003067)the Chinese Academy of Sciences(No.XDB17000000)。
文摘The prototypical reaction of F+HD→DF+H was investigated at collision energies from 3.03 meV to 17.97 meV using a crossed molecular beam apparatus with multichannel Rydberg tagging time-of-flight detection.Significant contributions from both the BornOppenheimer(BO)forbidden reaction F^(*)(^(2)P_(1/2))+HD→DF+H and the BO-allowed reaction F(^(2)P_(3/2))+HD→DF+H were observed.In the backward scattering direction,the contribution from the BO-forbidden reaction F^(*)(^(2)P_(1/2))+HD was found to be considerably greater than the BO-allowed reaction F(^(2)P_(3/2))+HD,indicating the non-adiabatic effects play an important role in the dynamics of the title reaction at low collision energies.Collision-energy dependence of differential cross sections(DCSs)in the backward scattering direction was found to be monotonously decreased as the collision energy decreases,which does not support the existence of resonance states in this energy range.DCSs of both BO-allowed and BO-forbidden reactions were measured at seven collision energies from 3.03 meV to 17.97 meV.It is quite unexpected that the angular distribution gradually shifts from backward to sideway as the collision energy decreases from 17.97 meV to 3.03 meV,suggesting some unknown mechanisms may exist at low collision energies.