For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va...For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.展开更多
In this paper, an approach to optimize set points is proposed for controlled Organic Rankine Cycle(ORC)systems. Owing to both disturbances and variations of operating point existing in ORC systems, it is necessary to ...In this paper, an approach to optimize set points is proposed for controlled Organic Rankine Cycle(ORC)systems. Owing to both disturbances and variations of operating point existing in ORC systems, it is necessary to optimize the set points for controlled ORC systems so as to improve the energy conversion efficiency. At first, the optimal set points of controlled ORC systems are investigated by revisiting performance analysis and optimization of ORC systems. The expected set points of the evaporating pressure and the temperature at evaporator outlet are then determined by combining genetic algorithm with least squares support vector machine(GA-LSSVM). Simulation results show that the predicted results by GA-LSSVM can be regarded as the optimal set points of controlled ORC systems with varying operating conditions.展开更多
基金Project (2012AA053001) supported by High-tech Research and Development Program of China
文摘For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.
基金supported by the National Basic Research Program of China(2011CB710706)the National Natural Science Foundation of China(51210011,61374025)
文摘In this paper, an approach to optimize set points is proposed for controlled Organic Rankine Cycle(ORC)systems. Owing to both disturbances and variations of operating point existing in ORC systems, it is necessary to optimize the set points for controlled ORC systems so as to improve the energy conversion efficiency. At first, the optimal set points of controlled ORC systems are investigated by revisiting performance analysis and optimization of ORC systems. The expected set points of the evaporating pressure and the temperature at evaporator outlet are then determined by combining genetic algorithm with least squares support vector machine(GA-LSSVM). Simulation results show that the predicted results by GA-LSSVM can be regarded as the optimal set points of controlled ORC systems with varying operating conditions.