The Schrodinger equation type nonlinear coupled Maccari system is a significant equation that flourished with the wide-ranging arena concerning fluid flow and the theory of deep-water waves,physics of plasma,nonlinear...The Schrodinger equation type nonlinear coupled Maccari system is a significant equation that flourished with the wide-ranging arena concerning fluid flow and the theory of deep-water waves,physics of plasma,nonlinear optics,etc.We exploit the enhanced tanh approach and the rational(G/G)-expansion process to retrieve the soliton and dissimilar soliton solutions to the Maccari system in this study.The suggested systems of nonlinear equations turn into a differential equation of single variable through executing some operations of wave variable alteration.Thereupon,with the successful implementation of the advised techniques,a lot of exact soliton solutions are regained.The obtained solutions are depicted in 2D,3D,and contour traces by assigning appropriate values of the allied unknown constants.These diverse graphical appearances assist the researchers to understand the underlying processes of intricate phenomena of the leading equations.The individual performances of the employed methods are praise-worthy which justify further application to unravel many other nonlinear evolution equations ascending in various branches of science and engineering.展开更多
The diverse patterns of waves on the oceans yielded by the Kadomtsev Petviashvili-modified equal width(KP-mEW)equation are highlighted in this paper.Two recent established approaches such as the im-proved auxiliary eq...The diverse patterns of waves on the oceans yielded by the Kadomtsev Petviashvili-modified equal width(KP-mEW)equation are highlighted in this paper.Two recent established approaches such as the im-proved auxiliary equation technique and the enhanced rational(G'/G)-expansion scheme are utilized to construct wave solutions of the proposed governing model.Numerous rational,trigonometric,exponen-tial,and hyperbolic wave solutions bearing many free parameters are successfully acquired in appropriate form.The obtained solutions are plotted in various profiles as three-dimension,two-dimension,and con-tour to illustrate their physical appearances.The plotting outlines appear in the shapes of singular kink,anti-kink,kink,compacton,anti-compacton,bell,anti-bell,periodic,singular periodic etc.The computa-tional software Maple is used for plotting and checking the validity of the found solutions.This paper claims to be novel for generating new results regarding the earlier results.展开更多
文摘The Schrodinger equation type nonlinear coupled Maccari system is a significant equation that flourished with the wide-ranging arena concerning fluid flow and the theory of deep-water waves,physics of plasma,nonlinear optics,etc.We exploit the enhanced tanh approach and the rational(G/G)-expansion process to retrieve the soliton and dissimilar soliton solutions to the Maccari system in this study.The suggested systems of nonlinear equations turn into a differential equation of single variable through executing some operations of wave variable alteration.Thereupon,with the successful implementation of the advised techniques,a lot of exact soliton solutions are regained.The obtained solutions are depicted in 2D,3D,and contour traces by assigning appropriate values of the allied unknown constants.These diverse graphical appearances assist the researchers to understand the underlying processes of intricate phenomena of the leading equations.The individual performances of the employed methods are praise-worthy which justify further application to unravel many other nonlinear evolution equations ascending in various branches of science and engineering.
文摘The diverse patterns of waves on the oceans yielded by the Kadomtsev Petviashvili-modified equal width(KP-mEW)equation are highlighted in this paper.Two recent established approaches such as the im-proved auxiliary equation technique and the enhanced rational(G'/G)-expansion scheme are utilized to construct wave solutions of the proposed governing model.Numerous rational,trigonometric,exponen-tial,and hyperbolic wave solutions bearing many free parameters are successfully acquired in appropriate form.The obtained solutions are plotted in various profiles as three-dimension,two-dimension,and con-tour to illustrate their physical appearances.The plotting outlines appear in the shapes of singular kink,anti-kink,kink,compacton,anti-compacton,bell,anti-bell,periodic,singular periodic etc.The computa-tional software Maple is used for plotting and checking the validity of the found solutions.This paper claims to be novel for generating new results regarding the earlier results.