One of the remarkable features of the next generation network is the integration of heterogeneous wireless networks, which enables mobile users with multi-mode terminals access to the best available network seamlessly...One of the remarkable features of the next generation network is the integration of heterogeneous wireless networks, which enables mobile users with multi-mode terminals access to the best available network seamlessly. However, most of previous work only takes account of either maximizing single user's utility or the whole network's payoff, rarely considers the negotiation between them. In this paper, we propose a novel network selection approach using improved multiplicative multi-attribute auction (MMA). At first, an improved MMA method is put forward to define the user's utility. Additionally, user cost is defined by considering allocated bandwidth, network load intensity and cost factor parameter. And last the best suitable network is selected according to the user's performance-cost-ration. Simulation results confirm that the proposed scheme outperforms the existing scheme in terms of network selection's fairness, user's performance-cost-ration, load balancing and the number of accommodated users.展开更多
基金supported by the National Natural Science Funds of China for Young Scholar (61001115)the Fundamental Research Funds for the Central Universities of China (2012RC0126,2011RC0110)
文摘One of the remarkable features of the next generation network is the integration of heterogeneous wireless networks, which enables mobile users with multi-mode terminals access to the best available network seamlessly. However, most of previous work only takes account of either maximizing single user's utility or the whole network's payoff, rarely considers the negotiation between them. In this paper, we propose a novel network selection approach using improved multiplicative multi-attribute auction (MMA). At first, an improved MMA method is put forward to define the user's utility. Additionally, user cost is defined by considering allocated bandwidth, network load intensity and cost factor parameter. And last the best suitable network is selected according to the user's performance-cost-ration. Simulation results confirm that the proposed scheme outperforms the existing scheme in terms of network selection's fairness, user's performance-cost-ration, load balancing and the number of accommodated users.