Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy Ea can react. However, the internal energy will not be proportional to the gas temperature if the...Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy Ea can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio y and the gas constant R vary during chemical reaction processes. The varying y may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant γ assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable γ and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one- dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable γ and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.展开更多
The solution of the cylindrical detonation wave generated by the linear explosion was obtained by numerical method in ref. [1.].In this paper, when the ratio of specific heat by using the enlargement coordinate method...The solution of the cylindrical detonation wave generated by the linear explosion was obtained by numerical method in ref. [1.].In this paper, when the ratio of specific heat by using the enlargement coordinate method, the first-order analytical solutions are obtained. The perturbation parameter is The correction of these solutions is checked at the end of this paper.展开更多
文摘Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy Ea can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio y and the gas constant R vary during chemical reaction processes. The varying y may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant γ assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable γ and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one- dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable γ and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.
文摘The solution of the cylindrical detonation wave generated by the linear explosion was obtained by numerical method in ref. [1.].In this paper, when the ratio of specific heat by using the enlargement coordinate method, the first-order analytical solutions are obtained. The perturbation parameter is The correction of these solutions is checked at the end of this paper.