Laser Doppler vibrometer (LDV) has a potential application prospect in remote sensing. Based on the correlation theories of heterodyne detection, a LDV system with a configuration of all fiber and heterodyne techniq...Laser Doppler vibrometer (LDV) has a potential application prospect in remote sensing. Based on the correlation theories of heterodyne detection, a LDV system with a configuration of all fiber and heterodyne techniques is developed to detect the sound signal through the vibration of glass. Experimental results show that the LDV system has an ability to acquire the real-time speech signal 25 m away through glass. While, the system signal-to-noise ratio (SNR) value decreases with the increase of the glass thickness and the detection distance.展开更多
AIM: To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. METHODS: A...AIM: To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. METHODS: A total of 170 subjects were enrolled in this study. All subjects were examined by ultrasound and H-1-magnetic resonance spectroscopy (H-1-MRS) on the same day. The ultrasound hepatic/renal echo-intensity ratio and ultrasound hepatic echo-intensity attenuation rate were obtained from ordinary ultrasound images using the MATLAB program. RESULTS: Correlation analysis revealed that the ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate were significantly correlated with H-1-MRS liver fat content (ultrasound hepatic/renal ratio: r = 0.952, P = 0.000; hepatic echo-intensity attenuation r = 0.850, P = 0.000). The equation for predicting liver fat content by ultrasound (quantitative ultrasound model) is: liver fat content (%) = 61.519 x ultrasound hepatic/renal ratio + 167.701 x hepatic echo-intensity attenuation rate -26.736. Spearman correlation analysis revealed that the liver fat content ratio of the quantitative ultrasound model was positively correlated with serum alanine aminotransferase, aspartate aminotransferase, and triglyceride, but negatively correlated with high density lipoprotein cholesterol. Receiver operating characteristic curve analysis revealed that the optimal point for diagnosing fatty liver was 9.15% in the quantitative ultrasound model. Furthermore, in the quantitative ultrasound model, fatty liver diagnostic sensitivity and specificity were 94.7% and 100.0%, respectively, showing that the quantitative ultrasound model was better than conventional ultrasound methods or the combined ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate. If the 1H-MRS liver fat content had a value < 15%, the sensitivity and specificity of the ultrasound quantitative model would be 81.4% and 100%, which still shows that using the model is better than the othe展开更多
Stemflow of xerophytic shrubs represents a significant component of water replenishment to the soil-root system and influences water utilization of plant roots at the stand scale,especially in water-scarce semi-arid e...Stemflow of xerophytic shrubs represents a significant component of water replenishment to the soil-root system and influences water utilization of plant roots at the stand scale,especially in water-scarce semi-arid ecosystems.The stemflow of two semi-arid shrubs(Caragana korshinskii and Hippophae rhamnoides)and its effect on soil moisture enhancement were evaluated during the growing season of 2011 in the semi-arid loess region of China.The results indicated that stemflow averaged 12.3%and 8.4%of the bulk precipitation for C.korshinskii and H.rhamnoides,respectively.Individual stemflow increased in a linear function with increasing rainfall depth.The relationship between funneling ratios and rainfall suggested that there existed a rainfall depth threshold of 11 mm for both C.korshinskii and H.rhamnoides.Averaged funneling ratios were 156.6±57.1 and49.5±30.8 for C.korshinskii and H.rhamnoides,respectively,indicating that the canopy architecture of the two shrubs was an effective funnel to channel stemflow to the root area,and C.korshinskii showed a greater potential to use stemflow water in the semi-arid conditions.For individual rainfall events,the wetting front depths were approximately 2 times deeper in the rooting zone around the stems than in the bare area outside canopy for both C.korshinskii and H.rhamnoides.Correspondingly,soil water content was also significantly higher in the root area around the shrub stem than in the area outside the shrub canopy.This confirms that shrub stemflow conserved in the deep soil layers may be an available moisture source for plant growth under semi-arid conditions.展开更多
文摘Laser Doppler vibrometer (LDV) has a potential application prospect in remote sensing. Based on the correlation theories of heterodyne detection, a LDV system with a configuration of all fiber and heterodyne techniques is developed to detect the sound signal through the vibration of glass. Experimental results show that the LDV system has an ability to acquire the real-time speech signal 25 m away through glass. While, the system signal-to-noise ratio (SNR) value decreases with the increase of the glass thickness and the detection distance.
文摘AIM: To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. METHODS: A total of 170 subjects were enrolled in this study. All subjects were examined by ultrasound and H-1-magnetic resonance spectroscopy (H-1-MRS) on the same day. The ultrasound hepatic/renal echo-intensity ratio and ultrasound hepatic echo-intensity attenuation rate were obtained from ordinary ultrasound images using the MATLAB program. RESULTS: Correlation analysis revealed that the ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate were significantly correlated with H-1-MRS liver fat content (ultrasound hepatic/renal ratio: r = 0.952, P = 0.000; hepatic echo-intensity attenuation r = 0.850, P = 0.000). The equation for predicting liver fat content by ultrasound (quantitative ultrasound model) is: liver fat content (%) = 61.519 x ultrasound hepatic/renal ratio + 167.701 x hepatic echo-intensity attenuation rate -26.736. Spearman correlation analysis revealed that the liver fat content ratio of the quantitative ultrasound model was positively correlated with serum alanine aminotransferase, aspartate aminotransferase, and triglyceride, but negatively correlated with high density lipoprotein cholesterol. Receiver operating characteristic curve analysis revealed that the optimal point for diagnosing fatty liver was 9.15% in the quantitative ultrasound model. Furthermore, in the quantitative ultrasound model, fatty liver diagnostic sensitivity and specificity were 94.7% and 100.0%, respectively, showing that the quantitative ultrasound model was better than conventional ultrasound methods or the combined ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate. If the 1H-MRS liver fat content had a value < 15%, the sensitivity and specificity of the ultrasound quantitative model would be 81.4% and 100%, which still shows that using the model is better than the othe
基金supported by the National Natural Science Foundation of China(91025015,51178209)
文摘Stemflow of xerophytic shrubs represents a significant component of water replenishment to the soil-root system and influences water utilization of plant roots at the stand scale,especially in water-scarce semi-arid ecosystems.The stemflow of two semi-arid shrubs(Caragana korshinskii and Hippophae rhamnoides)and its effect on soil moisture enhancement were evaluated during the growing season of 2011 in the semi-arid loess region of China.The results indicated that stemflow averaged 12.3%and 8.4%of the bulk precipitation for C.korshinskii and H.rhamnoides,respectively.Individual stemflow increased in a linear function with increasing rainfall depth.The relationship between funneling ratios and rainfall suggested that there existed a rainfall depth threshold of 11 mm for both C.korshinskii and H.rhamnoides.Averaged funneling ratios were 156.6±57.1 and49.5±30.8 for C.korshinskii and H.rhamnoides,respectively,indicating that the canopy architecture of the two shrubs was an effective funnel to channel stemflow to the root area,and C.korshinskii showed a greater potential to use stemflow water in the semi-arid conditions.For individual rainfall events,the wetting front depths were approximately 2 times deeper in the rooting zone around the stems than in the bare area outside canopy for both C.korshinskii and H.rhamnoides.Correspondingly,soil water content was also significantly higher in the root area around the shrub stem than in the area outside the shrub canopy.This confirms that shrub stemflow conserved in the deep soil layers may be an available moisture source for plant growth under semi-arid conditions.