The effects of heating rate (ranging from 50 to 300 ℃/s) during the final annealing process on microstructure evolution and magnetic properties of cold rolled non-oriented electrical steel were investigated. It was...The effects of heating rate (ranging from 50 to 300 ℃/s) during the final annealing process on microstructure evolution and magnetic properties of cold rolled non-oriented electrical steel were investigated. It was found that increasing heating rate increased the nucleation temperature and complete recrystallization temperature. At the same time, heating rate increasing could cause the substantially refined structures for the recrystallization grains and this grain refinement would decline when the heating rate was beyond 50 ℃/s. The recrystallization texture exhibited pronounced improvement with heating rate, such as the intensity decrease of 〈111〉//ND (normal direction) fiber and the intensity increase of { 110}%〈001〉 Goss texture component. The texture improvement and grain size refinement caused by heating rate increasing resulted in complicated variation of the magnetic properties. The magnetic induction (B50) keeps increasing while heating rate increases from 15 to 300 ℃/s which is due to the recrystallized texture optimization caused by rapid heating. The core losses (P1.5/50) decrease while heating rate increases from 15 to 100 ℃/s; however, the core losses would increase when heating rate is higher than 100 ℃/s, which is caused by the mean grain size refinement after rapid heating annealing. The results indicate that recrystallization texture and the magnetic properties of the non-oriented electrical steel can be improved definitely by rapid heating during the final annealing treatment.展开更多
Thermal simulation experiment of gas generation from the peat and the coals were performed using the high temperature and pressure apparatus, at temperature ranging from 336.8-600℃, a pressure of 50MPa and two heatin...Thermal simulation experiment of gas generation from the peat and the coals were performed using the high temperature and pressure apparatus, at temperature ranging from 336.8-600℃, a pressure of 50MPa and two heating rates of 20℃/h and 2℃/h, and the evolution and formation of coalbed gas components were studied. Results show that for the coals, the gaseous products are mainly composed of hydrocarbon gases. However, for the peat the content of hydrocarbon gases in gaseous products is lower than that of non-hydrocarbon components. In the generated hydrocarbon gases methane is predominant and heavy hydrocarbon gases (C2-5) are present in small amount. Meanwhile, carbon dioxide (CO2) predominates the generated non-hydrocarbon gases, and hydrogen (H2) and sul-furated hydrogen (H2S) are existent in trace amount. It is also observed that temperature is the main factor controlling the evolution of coalbed gas generation. With increasing vitrinite reflectance, methane rapidly increases, CO2 sightly increases, and C2-5 hydrocarbons first increase and then decrease. The peat and Shanxi formation coal have a higher generative potential of coalbed gases than coals and Taiyuan formation coal, respectively, reflecting the effect of the property of organic matter on the characteristics of coalbed gas component generation. In this study, it is found that low heating rate is favorable for the generation of methane, H2 and CO2, and the decomposition of C2-5 hydrocarbons. This shows that heating time plays an important controlling role in the generation and evolution of coalbed gases. The results obtained from the simulation experiment in the study of coalbed gases in natural system are also discussed.展开更多
Roles of rare earth oxide (RE2O3) additives in millimeter-wave(MM) sintering of AIN were investigated from the standpoints of phase diagram, heating characteristics of rare earth oxides, and morphology of intergra...Roles of rare earth oxide (RE2O3) additives in millimeter-wave(MM) sintering of AIN were investigated from the standpoints of phase diagram, heating characteristics of rare earth oxides, and morphology of intergranular oxide phase. In the millimeter-wave sintering of AIN, densification temperature decreased with the decrease of the ionic radius of rare earth ion and was closely related with the eutectic temperature in the RE2Oa-Al2O3 binary system. The lowest densification temperature in the millimeter-wave sintering of AIN with Yb2O3 additive was attributed to the largest heating rate of Yb2O3-Al2O3 binary oxide under millimeter-wave radiation. Furthermore, the lowest densification temperature could be attained while selecting the Yb2O3 content so as to form the intergranular phase with the eutectic composition in the Yb2O3-Al2O3 binary system. The result showed good agreement with the above mentioned during the sintering of Si3N4 with Yb2O3-Al2O3 additive. From TEM observation, it was verified that film-like intergranular oxide phase formed under millimeter-wave radiation was favorable for attaining high thermal conductivity in the Yb2O3 added AINs.展开更多
Four editions of the High Resolution Transmission (HITRAN) databases (HITRAN96, HITRAN2K, HITRAN04, and HITRAN08) are compared by using a line-by-line (LBL) radiative model in the long-wave calculation for six t...Four editions of the High Resolution Transmission (HITRAN) databases (HITRAN96, HITRAN2K, HITRAN04, and HITRAN08) are compared by using a line-by-line (LBL) radiative model in the long-wave calculation for six typical atmospheres. The results show that differences in downward radiative fluxes between HITRAN96 and HITRAN08 at the surface can reach a maximum of 1.70 W m-2 for tropical atmospheres. The largest difference in heating rate between HITRAN96 and HITRAN08 can reach 0.1 K day-1 for midlatitude summer atmosphere. Uncertainties caused by line intensity and air-broadened half- widths are also evaluated in this work using the uncertainty codes given in HITRAN08. The uncertainty is found to be 1.92 W m-2 for upward fluxes at the top of the atmosphere (TOA) and 1.97 W m-2 for downward fluxes at the surface. The largest heating rate caused by the uncertainty of line intensity and air-broadened hMf-width can reach 0.5 K day-1. The differences in optical depths between 1300 and 1700 cm-1 caused by different HITRAN versions are larger than those caused by the uncertainties in intensity and air-broadened half-width. This paper suggests that there is inaccurate representation of line parameters over some spectral ranges in HITRAN and more attention should be paid to these ranges in fields such as remote sensing.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50874010 ,50802008) Program for New Century Excellent Talents in University of China (NCET-05-0101)
文摘The effects of heating rate (ranging from 50 to 300 ℃/s) during the final annealing process on microstructure evolution and magnetic properties of cold rolled non-oriented electrical steel were investigated. It was found that increasing heating rate increased the nucleation temperature and complete recrystallization temperature. At the same time, heating rate increasing could cause the substantially refined structures for the recrystallization grains and this grain refinement would decline when the heating rate was beyond 50 ℃/s. The recrystallization texture exhibited pronounced improvement with heating rate, such as the intensity decrease of 〈111〉//ND (normal direction) fiber and the intensity increase of { 110}%〈001〉 Goss texture component. The texture improvement and grain size refinement caused by heating rate increasing resulted in complicated variation of the magnetic properties. The magnetic induction (B50) keeps increasing while heating rate increases from 15 to 300 ℃/s which is due to the recrystallized texture optimization caused by rapid heating. The core losses (P1.5/50) decrease while heating rate increases from 15 to 100 ℃/s; however, the core losses would increase when heating rate is higher than 100 ℃/s, which is caused by the mean grain size refinement after rapid heating annealing. The results indicate that recrystallization texture and the magnetic properties of the non-oriented electrical steel can be improved definitely by rapid heating during the final annealing treatment.
文摘Thermal simulation experiment of gas generation from the peat and the coals were performed using the high temperature and pressure apparatus, at temperature ranging from 336.8-600℃, a pressure of 50MPa and two heating rates of 20℃/h and 2℃/h, and the evolution and formation of coalbed gas components were studied. Results show that for the coals, the gaseous products are mainly composed of hydrocarbon gases. However, for the peat the content of hydrocarbon gases in gaseous products is lower than that of non-hydrocarbon components. In the generated hydrocarbon gases methane is predominant and heavy hydrocarbon gases (C2-5) are present in small amount. Meanwhile, carbon dioxide (CO2) predominates the generated non-hydrocarbon gases, and hydrogen (H2) and sul-furated hydrogen (H2S) are existent in trace amount. It is also observed that temperature is the main factor controlling the evolution of coalbed gas generation. With increasing vitrinite reflectance, methane rapidly increases, CO2 sightly increases, and C2-5 hydrocarbons first increase and then decrease. The peat and Shanxi formation coal have a higher generative potential of coalbed gases than coals and Taiyuan formation coal, respectively, reflecting the effect of the property of organic matter on the characteristics of coalbed gas component generation. In this study, it is found that low heating rate is favorable for the generation of methane, H2 and CO2, and the decomposition of C2-5 hydrocarbons. This shows that heating time plays an important controlling role in the generation and evolution of coalbed gases. The results obtained from the simulation experiment in the study of coalbed gases in natural system are also discussed.
基金the Grant-in-Aid for Scientific Research on Priority Area (18070004) of MEXT, Japan
文摘Roles of rare earth oxide (RE2O3) additives in millimeter-wave(MM) sintering of AIN were investigated from the standpoints of phase diagram, heating characteristics of rare earth oxides, and morphology of intergranular oxide phase. In the millimeter-wave sintering of AIN, densification temperature decreased with the decrease of the ionic radius of rare earth ion and was closely related with the eutectic temperature in the RE2Oa-Al2O3 binary system. The lowest densification temperature in the millimeter-wave sintering of AIN with Yb2O3 additive was attributed to the largest heating rate of Yb2O3-Al2O3 binary oxide under millimeter-wave radiation. Furthermore, the lowest densification temperature could be attained while selecting the Yb2O3 content so as to form the intergranular phase with the eutectic composition in the Yb2O3-Al2O3 binary system. The result showed good agreement with the above mentioned during the sintering of Si3N4 with Yb2O3-Al2O3 additive. From TEM observation, it was verified that film-like intergranular oxide phase formed under millimeter-wave radiation was favorable for attaining high thermal conductivity in the Yb2O3 added AINs.
基金Support Program of China (2007BAC03A01)National Natural Science Foundation of China (41075056)National Basic Research and Development (973) Program of China (2011CB403405)
文摘Four editions of the High Resolution Transmission (HITRAN) databases (HITRAN96, HITRAN2K, HITRAN04, and HITRAN08) are compared by using a line-by-line (LBL) radiative model in the long-wave calculation for six typical atmospheres. The results show that differences in downward radiative fluxes between HITRAN96 and HITRAN08 at the surface can reach a maximum of 1.70 W m-2 for tropical atmospheres. The largest difference in heating rate between HITRAN96 and HITRAN08 can reach 0.1 K day-1 for midlatitude summer atmosphere. Uncertainties caused by line intensity and air-broadened half- widths are also evaluated in this work using the uncertainty codes given in HITRAN08. The uncertainty is found to be 1.92 W m-2 for upward fluxes at the top of the atmosphere (TOA) and 1.97 W m-2 for downward fluxes at the surface. The largest heating rate caused by the uncertainty of line intensity and air-broadened hMf-width can reach 0.5 K day-1. The differences in optical depths between 1300 and 1700 cm-1 caused by different HITRAN versions are larger than those caused by the uncertainties in intensity and air-broadened half-width. This paper suggests that there is inaccurate representation of line parameters over some spectral ranges in HITRAN and more attention should be paid to these ranges in fields such as remote sensing.