Localization using a Wireless Sensor Network (WSN) has become a field of interest for researchers in the past years. This information is expected to aid in routing, systems maintenance and health monitoring. For examp...Localization using a Wireless Sensor Network (WSN) has become a field of interest for researchers in the past years. This information is expected to aid in routing, systems maintenance and health monitoring. For example, many projects aiming to monitor the elderly at home include a personal area network (PAN) which can provide current location of the patient to the medical staff. This article presents an overview of the current trends in this domain. We introduce the mathematical tools used to determine position then we introduce a selection of range-free and range-based proposals. Finally, we provide a comparison of these techniques and suggest possible areas of improvement.展开更多
Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorit...Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorithms use location metrics such as ToA, TDoA, RSS, and AoA to estimate the distance between two nodes. Proximity sensing between nodes is typically the basis for range-free algorithms. A tradeoff exists since range-based algorithms are more accurate but also more complex. However, in applications such as target tracking, localization accuracy is very important. In this paper, we propose a new range-based algorithm which is based on the density-based outlier detection algorithm (DBOD) from data mining. It requires selection of the K-nearest neighbours (KNN). DBOD assigns density values to each point used in the location estimation. The mean of these densities is calculated and those points having a density larger than the mean are kept as candidate points. Different performance measures are used to compare our approach with the linear least squares (LLS) and weighted linear least squares based on singular value decomposition (WLS-SVD) algorithms. It is shown that the proposed algorithm performs better than these algorithms even when the anchor geometry about an unlocalized node is poor.展开更多
文摘Localization using a Wireless Sensor Network (WSN) has become a field of interest for researchers in the past years. This information is expected to aid in routing, systems maintenance and health monitoring. For example, many projects aiming to monitor the elderly at home include a personal area network (PAN) which can provide current location of the patient to the medical staff. This article presents an overview of the current trends in this domain. We introduce the mathematical tools used to determine position then we introduce a selection of range-free and range-based proposals. Finally, we provide a comparison of these techniques and suggest possible areas of improvement.
文摘Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorithms use location metrics such as ToA, TDoA, RSS, and AoA to estimate the distance between two nodes. Proximity sensing between nodes is typically the basis for range-free algorithms. A tradeoff exists since range-based algorithms are more accurate but also more complex. However, in applications such as target tracking, localization accuracy is very important. In this paper, we propose a new range-based algorithm which is based on the density-based outlier detection algorithm (DBOD) from data mining. It requires selection of the K-nearest neighbours (KNN). DBOD assigns density values to each point used in the location estimation. The mean of these densities is calculated and those points having a density larger than the mean are kept as candidate points. Different performance measures are used to compare our approach with the linear least squares (LLS) and weighted linear least squares based on singular value decomposition (WLS-SVD) algorithms. It is shown that the proposed algorithm performs better than these algorithms even when the anchor geometry about an unlocalized node is poor.