Stratified random survey is commonly used to estimate abundance indices of fish populations in multispecies survey,providing reliable data for stock assessment and fisheries management.In some cases,however,the sample...Stratified random survey is commonly used to estimate abundance indices of fish populations in multispecies survey,providing reliable data for stock assessment and fisheries management.In some cases,however,the sample size is relatively small because of the limitation of survey cost or other factors.The allocation methods of sampling efforts among strata in stratified random surveys with small sample size may need adjustment compared with traditional approaches.In this study,two sampling stations were allocated to each stratum first and then the remaining sampling units were allocated among strata using five traditional allocation methods.In order to distinguish them from traditional methods,we called them adjusted methods in this study.A simulation study was conducted to compare the performances of different allocation strategies of sampling efforts in a stratified random survey for estimating abundance indices of multiple target species.Relative estimation error(REE)and relative bias(RB)were used to measure the precision and accuracy of estimates of abundance indices under different allocation schemes of sampling efforts in the multispecies survey.The performances of different allocation schemes in estimating abundance indices varied greatly for different species over different seasons.The adjusted Neyman allocation scheme could significantly reduce the REE and RB of estimates of abundance index for single species survey.For multiple species surveys,the adjusted average-Neyman allocation method,the adjusted Yate allocation method,the adjusted proportional allocation method and current allocation method had relatively high accuracy and precision of estimates of abundance indices for four species in terms of the total_(REE) and total_(RB).Though the adjusted average-Neyman allocation scheme did not always have the best performance,it was the optimal one considering the accuracy and precision of estimates of abundance indices for all species simultaneously.The allocation of sampling efforts among strata in stratif展开更多
In this paper, we propose a software component under Windows that generates pseudo random numbers using RDS (Refined Descriptive Sampling) as required by the simulation. RDS is regarded as the best sampling method a...In this paper, we propose a software component under Windows that generates pseudo random numbers using RDS (Refined Descriptive Sampling) as required by the simulation. RDS is regarded as the best sampling method as shown in the literature. In order to validate the proposed component, its implementation is proposed on approximating integrals. The simulation results from RDS using "RDSRnd" generator were compared to those obtained using the generator "Rnd" included in the Pascal programming language under Windows. The best results are given by the proposed software component.展开更多
基金This work was funded by the National Key R&D Program of China(2018YFD0900904)the National Natural Science Foundation of China(31772852)the Fundamental Research Funds for the Central Universities(No.201562030,No.201612004).
文摘Stratified random survey is commonly used to estimate abundance indices of fish populations in multispecies survey,providing reliable data for stock assessment and fisheries management.In some cases,however,the sample size is relatively small because of the limitation of survey cost or other factors.The allocation methods of sampling efforts among strata in stratified random surveys with small sample size may need adjustment compared with traditional approaches.In this study,two sampling stations were allocated to each stratum first and then the remaining sampling units were allocated among strata using five traditional allocation methods.In order to distinguish them from traditional methods,we called them adjusted methods in this study.A simulation study was conducted to compare the performances of different allocation strategies of sampling efforts in a stratified random survey for estimating abundance indices of multiple target species.Relative estimation error(REE)and relative bias(RB)were used to measure the precision and accuracy of estimates of abundance indices under different allocation schemes of sampling efforts in the multispecies survey.The performances of different allocation schemes in estimating abundance indices varied greatly for different species over different seasons.The adjusted Neyman allocation scheme could significantly reduce the REE and RB of estimates of abundance index for single species survey.For multiple species surveys,the adjusted average-Neyman allocation method,the adjusted Yate allocation method,the adjusted proportional allocation method and current allocation method had relatively high accuracy and precision of estimates of abundance indices for four species in terms of the total_(REE) and total_(RB).Though the adjusted average-Neyman allocation scheme did not always have the best performance,it was the optimal one considering the accuracy and precision of estimates of abundance indices for all species simultaneously.The allocation of sampling efforts among strata in stratif
文摘In this paper, we propose a software component under Windows that generates pseudo random numbers using RDS (Refined Descriptive Sampling) as required by the simulation. RDS is regarded as the best sampling method as shown in the literature. In order to validate the proposed component, its implementation is proposed on approximating integrals. The simulation results from RDS using "RDSRnd" generator were compared to those obtained using the generator "Rnd" included in the Pascal programming language under Windows. The best results are given by the proposed software component.